PHILIPPINE NATIONAL STANDARD

PNS/BAFS/PAES 217:2017 ICS 65.060.35

Determination of Irrigation Water Requirements

BUREAU OF AGRICULTURE AND FISHERIES STANDARDS

BPI Compound Visayas Avenue, Diliman, Quezon City 1101 Philippines Phone (632) 920-6131; (632) 455-2856; (632) 467-9039; Telefax (632) 455-2858 E-mail: bafpsda@yahoo.com.ph Website: www.bafps.da.gov.ph

PHILIPPINE NATIONAL STANDARD Determination of Irrigation Water Requirements

Foreword

The formulation of this national standard was initiated by the Agricultural Machinery Testing and Evaluation Center (AMTEC) under the project entitled "Enhancement of Nutrient and Water Use Efficiency Through Standardization of Engineering Support Systems for Precision Farming" funded by the Philippine Council for Agriculture, Aquaculture and Forestry and Natural Resources Research and Development - Department of Science and Technology (PCAARRD - DOST).

As provided by the Republic Act 10601 also known as the Agricultural and Fisheries Mechanization Law (AFMech Law of 2013), the Bureau of Agriculture and Fisheries Standards (BAFS) is mandated to develop standard specifications and test procedures for agricultural and fisheries machinery and equipment. Consistent with its standards development process, BAFS has endorsed this standard for the approval of the DA Secretary through the Bureau of Agricultural and Fisheries Engineering (BAFE) and to the Bureau of Philippine Standards (BPS) for appropriate numbering and inclusion to the Philippine National Standard (PNS) repository.

This standard has been technically prepared in accordance with BPS Directives Part 3:2003 – Rules for the Structure and Drafting of International Standards.

The word "shall" is used to indicate mandatory requirements to conform to the standard.

The word "should" is used to indicate that among several possibilities one is recommended as particularly suitable without mentioning or excluding others.

PHILIPPINE NATIONAL STANDARD Determination of Irrigation Water Requirements

PNS/BAFS/PAES 217:2017

CONTENTS

Page

1	Scope	1
2	References	1
3	Definitions	1
4	Initial Investigations	4
5	Development of Cropping Calendar	6
6	Crop Water Requirement	9
7	Farm Water Requirement	10
8	Diversion Water Requirement	11
9	Bibliography	12

ANNEXES

Α	Projected Cropping Pattern for the Different Types of Climate	13
В	Determination of Reference Evapotranspiration	16
C	Determination of Soil Texture	41
D	Hydrologic Frequency Analysis	42
Ε	Determination of Effective Rainfall Using ADB Method	46
F	Determination of Land Soaking Requirement	47
G	Determination of Conveyance Losses	48
Η	Formulas	49

PHILIPPINE NATIONAL STANDARD

Determination of Irrigation Water Requirements

1 Scope

This standard provides guidelines and minimum requirements in calculating irrigation water requirements to meet the required performance standards.

2 References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this National Standard:

ASTM D 422	Standard Test Method for Particle-Size Analysis of Soils
PNS/BAFS/PAES 219:2017	Conveyance Systems Performance Evaluation of Open Channels – Determination of Seepage and Percolation by Ponding Method
PNS/BAFS/PAES 220:2017	Conveyance Systems Performance Evaluation of Open Channels – Determination of Seepage and Percolation by Inflow-Outflow Method

3 Definitions

For the purpose of this standard, the following terms shall apply:

3.1

actual crop evapotranspiration

 ET_a

rate of evapotranspiration equal to or smaller than predicted ET_{crop} as affected by the level of available soil water, salinity, field size or other causes

3.2

application efficiency

Ea

ratio of the average depth of irrigation water infiltrated and stored in the root zone to the average depth of irrigation water applied

3.3

conveyance efficiency

 E_c

ratio between water received at the inlet for a block of fields to that released at the project's headwork

3.4

crop coefficient

 k_c

ratio of the actual crop evpotranspiration to its potential evapotranspiration

3.5

crop evapotranspiration

rate of evapotranspiration of a disease-free crop growing in a large field (one or more ha) under optimal soil conditions, including sufficient water and fertilizer and achieving full production potential of that crop under the given growing environment; includes water loss through transpiration by the vegetation, and vaporation from the soil surface and wet leaves

3.6

cropping pattern

sequence of different crops grown in regular order on any particular field or fields

3.7

crop water requirement

ĊŴŔ

amount of water used in producing crops which is the sum of evapotranspiration or consumptive use plus seepage and percolation losses

3.8

diversion water requirement

DWR

the total quantity of water diverted from a stream, lake, or reservoir, or removed from the ground in order to irrigate a crop

3.9

effective rainfall

ER

amount of rainwater that falls directly on the field and is used by the crop for growth and development excluding deep percolation, surface runoff and interception

3.10

effective rooting depth

soil depth from which the bulk of the roots of the crop extracts most of the water needed for evapotranspiration

3.11

evapotranspiration

combination of water transpired from vegetation and evaporated from the soil, water, and plant surfaces.

3.12

farm water requirement

FWR

amount of water to replenish the crop water requirement and losses less the effective rainfall

3.13

hydrologic frequency analysis

estimation of the chance or likelihood of occurrence of a given event by determining the frequency curves of best fit to samples of hydrologic data

3.14

land preparation water requirement

LPWR

amount of water required in lowland rice production which includes water losses through evaporation, seepage and percolation and land soaking

3.15

land soaking water requirement

LSR

amount of water required in lowland rice production which is a function of the initial soil moisture and the physical properties of the soil

3.16

pan coefficient

ratio between reference evapotranspiration (ET_o) and water loss by evaporation from an open water surface of a pan

3.17

pan evaporation

rate of water loss by evaporation from an open water surface of a pan

3.18

percolation

vertical flow of water to below the root zone which is affected by soil structure, texture, bulk density, mineralogy, organic matter content, salt type and concentration

3.19

reference crop evapotranspiration

 ET_{o}

rate of evapotranspiration from a reference surface which is a hypothetical reference crop with an assumed crop height of 0.2 m, a fixed surface resisteance of 70 s/m and an albedo of 0.23.

3.20

residual moisture content

moisture left in the soil before the initial irrigation water delivery which describes the extent of water depletion from the soil when the water supply has been cut-off

3.21

seepage

water escaping below or out from water conveyance facilities such as open ditches, canals, natural channels, and waterway

4 Initial Investigation and General Procedures

4.1 Sufficient information shall be known prior to determining irrigation water requirements. Table 1 lists the data required.

4.2 A layout of irrigation components and the general procedures in determining irrigation water requirements and are shown in Figure 1 and Table 2, respectively.

Items	Description								
Area to be irrigated	Location, layout/shape, fixed boundaries and obstructions in the area shall be determined.								
	A copy of the map of the area shall be obtained.								
	Details on elevation and topography shall be known.								
Water supply	The physical and chemical suitability, location and supply								
	reliability of water supply shall be assessed.								
Soil	Physical characteristics and risk to erosion shall be								
	determined.								
Crop	The type of crop/s, suitability to climate and soil shall be								
	assessed.								
Meteorological Data	Availability of rainfall and evapotranspiration records								
	near the area shall be determined.								
	Prevailing wind direction and speed shall be known.								
Irrigation Method	The type of irrigation method and future flexibility shall								
	be determined.								

Table 1. Required Information for Initial Investigation

SOURCE: Irrigation Code of Practice and Irrigation Design Standards, 2007

Figure 1. Typical Irrigation System SOURCE: The Philippine Recommends for Irrigation Water Management Vol.1, 1978

Table 2. General Procedures	in Determining Irrigation Water
Requi	rements

Required Data	Relevance	Lowland	Upland					
type of crop	planning the	CROP WATER REQUIREMENT						
	cropping calendar and crop coefficient							
evapotranspiration and other meteorological data	determination of actual evapotranspiration (ET _a)	CWR = ET _a + (S&P) _{field}	CWR = ET _a + (S&P) _{field}					
type of soil	determination of seepage and percolation rate in the field (S & P) _{field}							

depth of root zone soil physical properties	determination of land soaking and	FARM WATER REQUIREMENT									
residual moisture content service area	water requirement (LPWR)										
required standing water service area	determination of effective rainfall	FWR = CWR - ER + LPWR + farm ditch losses	FWR = CWR - ER + farm ditch losses								
rainfall data	(ER)	or	or								
type of soil											
wetted perimeter and length of farm ditches	farm ditch losses	$FWR = (CWR-ER+LPWR)/E_a$	$FWR = (CWR-ER)/E_a$								
type of field application system	determination of application efficiency										

canal lining		DIVERSION WATE	ER REQUIREMENT
properties			
wetted perimeter			DWR = FWR +
and length of	dotormination of	DWR = FWR +	
canals: sub-lateral,		conveyance	lossos
lateral and main	conveyance losses	losses	105565
leakage through			or
gates		or	01
leakage through			DWD - EWD /E
canal dikes		$DWR = FWR/E_c$	$D V K - \Gamma V K / L_c$

5 Development of Cropping Calendar

5.1 The type of crop appropriate to the type of climate shall be selected to maximize the use of natural elements. Climate description, type of crops ideal to the climate, planting months and growing periods are presented in Table A.1 to Table A.4 of Annex A.

5.2 A cropping pattern should be selected to allow increased production. Cropping patterns that may be employed are:

5.2.1 Crop Rotation - where crops are planted in succession, year after year

EXAMPLE Rice-Soybean-Rice

5.2.2 Multiple Cropping - where four crops are grown in sequence, one after the other

EXAMPLE Rice-Mungbean-Rice-Pechay

5.2.3 Intercropping - where short duration catch crops are grown between rows of long-duration crops

EXAMPLE Coconut-Rice

- **5.2.4** Relay cropping where different are planted in a tight schedule
- **EXAMPLE** Rice-Soybean (planted before harvest of rice)-Sweet potato-Mungbean

5.3 Dry season and wet season shall be delineated by using simultaneous plots of rainfall and evapotranspiration in order to determine the start of cropping for each season and to avoid risk periods of water availability throughout the year.

5.4 Farming activities and the corresponding duration for each cropping within the year shall be identified. The cropping calendar may be planned on a decadal or weekly basis. Projected cropping calendars for various crops are presented in Figures A.1 to A.4 of Annex A. An example of a complete cropping calendar is shown in Table 3.

Table 3. Example of a cropping calendar

	10		-	—			7	_	_	_	-	-	-	-	_				_	7	-	-	-			_	-	_	-	· + -	~	-		, —	—	—	-	-	—		—		_	—
	7	5-	-+-	-		×		'-	_}	s	Ŧ	-	·	ļ,	5	╵┧	4		¥	2	-–	· -	∔	┝┥	4	-+	-	╟	·	×		'-	X_{i}	se –		+	-		٦,	5	'-	1-1	F.	A
Percent of Area	5	┥┥╴	. –	-	South	5	A took	لر_ ﴿	Natio	-	Ŧ	-	ŀ.	ALC: NO	Class.	4	-+	_/	A.	+	-–	. -	∔	┡┥	4	-+	-	- eş	ŝ.	and	stop	h,	Same.	4_		+	-	1	E.S.	12000	⊬	Į_, J	E.	4
	2	5 -	-+-	. 3	7'	are ore	an -	V and	<u>e</u> .	4-	Ŧ	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ĩ A	-	₋٫	/ *	×	+	-–	· -	4	┡┥	4	-+		≈°∕		oregas	4	<125	1			+	+	~	\$	4	1_	- 4	¥/]	_
	4,	₀ _ .	.+.	4	┝┿	. <u>`</u> -	.¥-	<u>, 1</u>		4-	Ŧ	-	·	+ 4	Ĺ	┥┛	4	-4	4-	Ŧ	-–	· -	∔	╘╴┥	4	-+		4		`4	· + -	1	L		4-	+	-		.∠ רר	1	 _	┨- ┥	41	_
		+			\square			F	UCE		╇	1_				Ц		+			Ļ	+	Ļ	Ц		Ц.			╇	Ļ		RI	CE	Ť	Ť	⊥	_	Ļ		L	\vdash	Ļ		L
Month		+	Oct.	_		Nov	<u>.</u>	┝	De	c.	╇		an.	_		Fe	b.	+	<u>M</u>	lare	<u>ch</u>	+	A	ni			Ma	y	╇		une	e	╇	_J	uly	<u>y</u>	_	At	ıgu	st	⊢	Se	pt.	_
Week		1	2 3	4	5	67	8	9	10	11 1	2 1	3 14	15	16	17	18	19	20	21 2	2 2	3 24	1 25	26	27	28	29 3	30 3	31 3	2 3	3 34	4 3:	5 3	6 31	7 38	8 39	9 4	10 41	1 42	43	44	45	46	47	48
1. Potential evapotranspiration	mm/day				\square		┶		$ \rightarrow$		⊥	\bot				\square		$ \rightarrow $	\perp	\perp	\perp						+	+	╇	╇	⊥	1	╇	╇	⊥	╇		┶	⊢	╞	\vdash	\square	\square	L
2. Crop coefficient		\square			Ш											Ц								Ц						⊥			⊥	⊥	⊥	⊥				┢		\square	\square	
3. Fraction of area planted		\square			Ш																													⊥	\bot	\perp				\bot		\square	\square	
4. Weighted crop coefficient		\square			Ш																													⊥	⊥	⊥				┢		\square	\square	
5. Weighted actual evapotranspiration	mm																																											
6 Weighted seepage and		++	+	┢	++	+	+	H	+	+	+	+	┢	\vdash	H	\vdash	+	+	╈	+	+	+	\vdash	\square		╈	+	+	+	╈	$^{+}$	+	╈	+	╈	+	+	+	┢	╈	⊢	H	Η	F
percolation	mm																																											
7. CROP WATER																																												
REQUIREMENT																																												
8. Effective rainfall	mm																																											
9. Land soaking requirement	mm																																									\square	\Box	
10. Standing water	mm																																											L
11. Fraction of area used for land					П		Τ				Т								Т	Т							Т	Т	Т	Т			Т	Т	Т	Т		Т	Γ	Т			\square	Γ
soaking																																												
12. Weighted evaporation	mm																																		Τ					Γ				
13. Land preparation water					П		Т				Т	Т							Т	Т	Т							Т	Т	Т			Т	Т	Т	Т		Τ	Г	Т	\Box	\square	\square	Γ
requirement																																												
14. Farm ditch losses	mm				П		Γ	Π			Т	Τ							Т	Τ	Т						Т	Т	Т	Т	Τ	Τ	Т	Т	Т	Т		Г	Γ	Г		\square	\square	Γ
15. Application losses	mm			Τ	П		Т	Π	Т		Т	Т					Τ		Т	Т	Т	Τ					Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		Т	Г	Г	\square		\square	Γ
13. FARM WATER		П			П		Τ	П		Т	Т	Τ				П			Τ	Т	Τ	Т		П			Т	Т	Т	Τ	Т	Т	Τ	Т	Т	Т	Τ	Т	Γ	Γ	Γ	\square	\square	Г
REQUIREMENT	mm																																											
14. FARM WATER	1				Π		Т				Т	Т							Т	Т	Т						Т	Т	Т	Т			Т	Т	Т	Т		Т	Г	Т	\square	\square	\square	Γ
REQUIREMENT	ips/na																																											
15. Canal losses											Ι								Τ	Ι								Ι	Ι	Γ	Γ	Ι	Γ		Γ	Ι								
16. DIVERSION WATER	less/k-	П	Τ		ГТ				Τ		Γ					Π		Τ	Τ	Γ	Γ					Τ	Τ	Τ	Τ		Γ	Τ		Γ	Г	Т			Γ					Γ
REQUIREMENT	ips/na			1					1					1				- 1					1																1					ĺ.

6 Crop Water Requirement

The crop water requirement shall be calculated using Annex H.1.

6.1 Actual evapotranspiration

6.1.1 The actual evapotranspiration shall be calculated using Annex H.2.

6.1.2 ET_0 shall be computed using the obtained based on the available meteorological data. The method of selection, details of computation and other requirements are presented in Annex B.

6.1.3 The values of k_c obtained from experimental plots are given in Table 4. It shall be noted that k_c varies by growth stage and must be reflected in the cropping calendar.

Gron	Growth Stage in Percent of Total Growth Duration										
Стор	0-20	20-40	40-70	70-90	Harvest						
Lowland rice	0.95	1.05	1.10	1.10	0.61						
Soybean, cowpea and											
mungbean	0.60	0.70	0.90	0.75	0.50						
Wheat	0.50	0.65	0.90	0.8	0.50						
Peanut	0.40	0.55	0.85	0.9	0.50						
Tobacco	0.40	0.60	0.75	0.75	0.75						
Corn (grain)	0.40	0.70	0.90	0.8	0.55						
Cabbage	0.40	0.60	0.70	0.7	0.65						

Table 4. Crop coefficient for various crops

SOURCE: David, W.P. Lysimeter studies, 1983

6.2 Seepage and percolation in the field/service area

Seepage and percolation in the field/service area can be determined by using reference values listed in Table 5. If information on soil texture is not available, procedures listed in Annex C can be used.

Table 5. Percolation	Values for	Various Soil	Textures
-----------------------------	------------	---------------------	-----------------

Soil Texture	Percolation (mm/day)
Clay	1.25
Silty Clay	1.5
Clay Loam	1.75
Silty Clay Loam	1.75
Sandy Clay Loam	2
Sandy Loam	4

SOURCE: NIA – Design Guides and Criteria for Irrigation Canals, O &M Roads, Drainage Channels and Appurtenant Structures

7 Farm Water Requirement

7.1 The farm water requirement shall be calculated using Annex H.3.

7.2 Effective rainfall

Effective rainfall shall be determined using a minimum of 10-year rainfall data. This can be calculated by using hydrologic frequency analysis (detailed in Annex D) or the Asian Development Bank (ADB) method (detailed in Annex E).

7.3 Land soaking requirement

Information on the crop depth of root zone and soil physical properties shall be obtained. Soil physical properties can be determined based on the soil texture (Annex C). Land soaking requirement shall be computed using Annex H.4. Details of calculation are presented in Annex F.

7.3 Land preparation water requirement

Land preparation water requirement shall be calculated as the total of land soaking water requirement, standing water and replenishment for evaporation. Land preparation water requirement shall be calculated using Annex H.5.

NOTE The recommended value for standing water during land preparation is 10 mm.

7.4 Farm ditch losses

Seepage and percolation in farm ditches can be determined by using reference values of seepage and percolation and canal dimensions or ponding method and inflow-outflow method. These methods can only be used in existing irrigation systems and are presented in PNS/BAFS/PAES 219:2017 – Conveyance Systems Performance Evaluation of Open Channels – Determination of Seepage and Percolation by Ponding Method and PNS/BAFS/PAES 220:2017 – Conveyance Systems Performance Evaluation of Open Channels – Determination of Seepage and Percolation by Inflow-Outflow Method. Farm ditch losses shall be calculated using Annex H.6.

7.5 Application efficiency, Ea

Application losses can be expressed using values of field application efficiency which depends on the type of field application system. Table 6 shows the corresponding values of application efficiency.

Irrigation Method	USDA	US (SCS)	ICID/ILRI
Surface Methods			
light soils	0.55		
medium soils	0.70		
heavy soils	0.60		
Graded border		0.60 – 0.75	0.53
Basin and level border		0.60 – 0.80	0.58
Contour ditch		0.50 – 0.55	
Furrow		0.55 – 0.70	0.57
Corrugation		0.50 – 0.70	
Subsurface		up to 0.80	
Sprinkler, hot dry climate		0.60	
moderate climate		0.70	0.67
humid and cool		0.80	
Rice			0.32

Table 6. Field Application Efficiency

SOURCE: FAO Irrigation and Drainage Paper No. 24, 1977

8 Diversion Water Requirement

8.1 The diversion water requirement shall be calculated using Annex H.7.

8.2 Conveyance losses

Seepage and percolation in the conveyance structures – supplementary farm ditches, main farm ditches, lateral canals, sub-lateral canals and main canal shall be determined to account for the conveyance losses. The process of computation is presented in Annex G.

8.3 For the purpose of planning, reference values for conveyance efficiency (E_c) can be used. Table 7 shows some values of conveyance efficiency based on the canal lining and the technical and managerial facilities of water control.

Table 7. Conveyance Efficiency

Supply System	ICID/ILRI
Continuous supply with no substantial change in flow	0.9
Rotational supply in projects of 3000-7000 ha and rotation areas	0.8
of 70-300 ha, with effective management	
Rotational supply in large schemes (>10000 ha) and small	
schemes (<1000 ha) with respective problematic	
communication and less effective management:	
based on predetermined schedule	0.7
based on advance request	0.65

9 Bibliography

Allen, R.G., Pereira, L.S., Raes D. and Smith, M. 1998. FAO Irrigation and Drainage Paper No. 56 Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements)

David, W.P., Firmalino R.B. and Tecson, L.C. Proposed Methodologies/Strategies for the Development of Location-Specific Irrigation Design Criteria.

Doorenbos, J. and Pruitt, W.O., 1977. FAO Irrigation and Drainage Paper No. 24 Guidelines for Predicting Crop Water Requirements

Irrigation New Zealand, Inc. 2007.Irrigation Code of Practice and Irrigation Design Standards.

National Irrigation Administration. 1979. Design Guides and Criteria for Irrigation Canals, O & M Roads, Drainage Channels & Appurtenant Structures

National Irrigation Administration. 1991. Irrigation Engineering Manual for Diversified Cropping

Philippine Council for Agriculture and Resources Research and Development. 1978. The Philippines Recommends for Irrigation Water Management Vol.1

Philippine Council for Agriculture and Resources Research and Development. 1978. The Philippines Recommends for Irrigation Water Management Vol.2

Tabbal, D.F, Bouman B.A.M, Bhuiyan S.I., Sibayan, E.B and M.A. Sattar. 2002. Onfarm Strategies for Reducing Water Input in Irrigated Rice; Case Studies in the Philippines

United States Department of Agriculture. 1993. National Engineering Handbook

ANNEX A (informative)

Recommended Cropping and Cropping Calendars

Table A.1. Type I Climate

Two pronounced seasons: dry from November to April: wet during the rest of the year. All provinces on the Western part of the rest of the year. All provinces on the Western part of the Islands of Luzon, Mindoro, Negros and Palawan are covered in Type I.

Crops	General Cropping Month	Growing/ Maturity
		(days)
Corn	October-January	70-90 (Green)
Peanut	November-January	100-125
Mungbean	November-February	60-95
Soybean	October-December	65-75
Cabbage	October-December	55-80
Pechay	October-December	25-45
Eggplant	September-February	50-142
Okra	October-December	55-120
Squash	October-December	70-120
Tomato	October-January	60-100
Watermelon	November-January	70-120
Sweet Potato	December-February	75-130
Radish	October-December	30-100
Garlic	October-December	90-120
Onion	October-December	80-115
Carrot	October-December	40-60

Table A.2. Type II Climate

No dry season with a very pronounced maximum rainfall from November to January. The areas covered are Catanduanes, Sorsogon, the Eastern part of Albay, the Eastern and Northern Parts of Camarines Norte, a great protion of the Eastern part of Quezon, the Eatern part of Leyte and a large portion of Eastern Mindanao

Crops	General Cropping Month	Growing/ Maturity
		(days)
Corn	March-May	70-90 (Green)
Peanut	January-February	100-126
Mungbean	Fabruary-June	60-95
Soybean	January-March	65-75
Cabbage	January-March	55-80
Pechay	October-December	25-45
Eggplant	January-April	50-142
	August-September	

Crops	General Cropping Month Growing/ Maturity	
		(days)
Okra	Whole Year	55-120
Squash	Whole Year	70-130
Tomato	January-April	60-100
Watermelon	January-March	70-120
Sweet Potato	Whole Year	75-130
Radish	March-May	30-100
Onion	December-March	80-115
Carrot	March-April	40-60

Table A 2 (n tin n

Table A.3. Type III Climate

No pronounced season, relatively dry from November to April and wet during the rest of the year. This type of climate covers the Western portion of the Mountain Province, Southern Quezon the Bontoc Peninsula, Masbate, Romblon, Northeast Panay, Eastern Negros, Central and Southern Cebu, part of Northern Mindanao and most of Eastern Palawan.

Crops General Cropping Month		Growing/ Maturity	
		(days)	
Corn	October-December	70-90 (Green)	
	December-February		
Peanut	September-October	100-125	
Mungbean	December-January	60-95	
Soybean	October-December	65-75	
Cabbage	October-December	55-80	
Pechay	October-December	25-45	
Eggplant	November-January	50-142	
Okra	October-December	55-120	
Squash	October-January	70-120	
Tomato	October-January	60-100	
Watermelon	October-January	70-120	
Sweet Potato	November-January	75-130	
Radish	November-January	30-100	
Garlic	October-December	90-120	
Onion	November-January	80-115	
Carrot	October-December	40-60	

Table A.4. Type IV Climate

Rainfall more or less evenly distributed throughout the year. The areas covered by Type IV climate are Batanes Province, North-eastern Luzon, Western Camarines Norte and Camarines Sur, Albay, Eastern Mindoro, Marinduque, Western Leyte, Northern Negros and most of Central, Eastern and Southern Mindanao.

Crops	General Cropping Month	Growing/ Maturity
		(days)
Corn	September-November	70-90 (Green)
	December-February	
Peanut	September-November	100-125
	November-February	
Mungbean	November-January	60-95
Soybean	November-January	65-75
Cabbage	Octiber-January	55-80
Pechay	November-January	25-45
Eggplant	November-January	50-142
Okra	September-October	55-120
	January-February	
Squash	November-January	70-120
Tomato	October-January	60-100
Watermelon	November-January	70-120
Sweet Potato	September-November	75-130
Radish	September-January	30-100
Garlic	September-February	90-120
Onion	September-January	80-115
Carrot	November-January	40-60

ANNEX B (normative)

Determination of Reference Evapotranspiration

This annex specifies guidelines in calculating the reference crop evapotranspiration using available meteorological data.

B.1 Selection of Appropriate Method

B.1.1 Four methods can be used in calculating reference crop evapotranspiration: Penman-Monteith method, Radiation method, Blaney-Criddle method and pan evaporation method.

B.1.2 The method of calculation should be selected based on the type, accuracy, and duration of available climatic data, natural pattern of evapotranspiration during the year and intended use of evapotranspiration estimates.

B.1.3 The duration and accuracy of the four methods are given in Table B.1, climatic data requirements for each method in Table B.2 and the required minimum length of record based on the application in Table B.3.

Method	Duration	Accuracy/Reliability
Penman- Monteith	daily, monthly, seasonal	reliable for any length period
Radiation	period of 5 days or more	less precise than Penman- Monteith
Blaney-Criddle	period of 5 days or more	less precise than Penman- Monteith
	period of 10 days or longer	less reliable for short-term estimates than other methods
Pan evaporation	if little previous history is available for a pan, caution should be exercised even for computing ETo for longer periods	can be accurate if evaporation pans are well maintained and properly located

Table B.1. Duration and Accuracy of the Penman-Monteith, Radiation,Blaney-Criddle and Pan Evaporation Method

SOURCE: National Engineering Handbook, 1993

Method	Data
	maximum temperature
	minimum temperature
	wind speed at 2m
Penman-Monteith	dewpoint temperature
	maximum relative humidity
	minimum relative humidity
	actual duration of sunshine
	maximum temperature
Radiation	minimum temperature
	solar radiation
Blaney-Criddle	maximum temperature
	minimum temperature
Pan evaporation	pan evaporation

Table B.2. Climatic Data Requirements

Table B.3. Minimum length of record required for each application

Application	Duration of Data Required
Irrigation Scheduling	daily
Irrigation System Design	historical record of at least 10 years
Reservoir Design, Water Right Determination	monthly water use estimates

NOTE: Adapted fom National Engineering Handbook, 1993

B.2 Calculation

B.2.1 Penman-Monteith Method

Item	Symbol	Unit
Initial data required		
Maximum temperature	T _{max}	0C
Minimum temperature	T_{min}	⁰ C
Elevation above sea level	Z	m
Wind speed at 2m	U 2	m/s
Dewpoint temperature	T_{dew}	0C
Maximum relative humidity	RH_{max}	%
Minimum relative humidity	RH _{min}	%
Latitude		0
Day of the year		

Month		
Actual duration of sunshine	n	h
Parameters used in calculat	ions	•
Mean daylight hours	N	h
Slope of vapour pressure	Δ	kPa/ºC
curve		
Psychrometric constant	γ	kPa/ºC
Saturation vapor pressure	es	kPa
Saturation vapor pressure at	e ^o (T _{max})	kPa
maximum temperature		
Saturation vapor pressure at	e ^o (T _{min})	kPa
minimum temperature		
Actual vapor pressure	ea	kPa
Extraterrestrial radiation	Ra	MJ/m2/day
Solar radiation	Rs	MJ/m2/day
Clear-sky solar radiation	Rso	MJ/m2/day
Net solar radiation	R _{ns}	MJ/m2/day
Net longwave radiation	R_{nl}	MJ/m2/day
Net radiation	Rn	MJ/m2/day
Soil heat flux	G	MJ/m2/day
Reference	ETo	mm/day
evapotranspiration		

B.2.1.1 Parameters

Values of climatic parameters from the daily maximum (T_{max}) and minimum (T_{min}) air temperature, altitude (z) and mean wind speed (u₂) shall be computed.

B.2.1.1.1 T_{mean} shall be computed as

$$T_{mean} = \frac{T_{max} + T_{min}}{2}$$
 (Equation B.1)

B.2.1.1.2 The value of the slope of vapor pressure curve (Δ) shall be determined using T_{mean} and Table B.4.

B.2.1.1.3 The value of the psychrometric constant (γ) shall be determined using T_{mean} and Table B.5.

B.2.1.1.4 Partial values shall be obtained using the following expressions:

$$(1 + 0.34 u_2)$$
(Expression B.1)

$$\frac{\Delta}{[\Delta + \gamma(1+0.34 u_2)]}$$
(Expression B.2)

$$\frac{\gamma}{[\Delta + \gamma(1+0.34 u_2)]}$$
(Expression B.3)

 $\left[\frac{900}{T_{\text{mean}}+273}\right]u_2 \qquad (Expression B.4)$

B.2.1.2 Vapor Pressure Deficit

The vapour pressure deficit (e_s-e_a) shall be determined as the difference between the saturation vapor pressure (e_s) and the actual vapor pressure (e_a) .

B.2.1.2.1 The saturation vapor pressure shall be computed from T_{max} and T_{min} .

B.2.1.2.2 $e^{o}(T_{max})$ and $e^{o}(T_{min})$ shall be determined using T_{max} and T_{min} respectively based on Table B.6.

B.2.1.2.3 Saturation vapor pressure shall be computed using Equation B.2.

$$e_{s} = \frac{e^{o}(T_{max}) + e^{o}(T_{min})}{2}$$
 (Equation B.2)

B.2.1.2.4 The actual vapor pressure (e_a) shall be determined. Four different formulae can be used depending on the availability of data: using dewpoint temperature (T_{dew}), using maximum (RH_{max}) and minimum (RH_{min}) relative humidity, using maximum relative humidity or using mean relative humidity.

B.2.1.2.4.1 Using T_{dew} , use Table B.6 for $e^{\circ}(T_{dew})$ which is the equivalent of (e_a).

B.2.1.2.1.2 Using RH_{max} and RH_{min},

$$e_{a} = \frac{\left[e^{o}(T_{\min})\frac{RH_{\max}}{100}\right] + \left[e^{o}(T_{\max})\frac{RH_{\min}}{100}\right]}{2}$$
(Equation B.3)

B.2.1.2.1.3 Using RH_{max} (recommended if there are errors in RH_{min}),

$$e_{a} = e^{o}(T_{\min})\frac{RH_{\max}}{100}$$
 (Equation B.4)

B.2.1.2.1.4 Using RH_{mean} (less recommended due to non-linearities),

$$e_a = e_s \frac{RH_{mean}}{100}$$
 (Equation B.5)

B.2.1.3 Radiation

The net radiation (R_n) shall be computed from the latitude, day, month, actual duration of sunshine (n), maximum (T_{max}) and minimum (T_{min}) air temperature and actual vapor pressure (e_a).

B.2.1.3.1 The extraterrestrial radiation (R_a) shall be determined using the data on latitude and Table B.7.

B.2.1.3.2 Mean daylight hours (N) shall be determined using the data on latitude and Table B.5.

B.2.1.3.3 If no data on solar radiation (R_s) is available, R_s shall be computed using Equation B.6.

$$R_s = (0.25 + 0.50 \text{ n/N})R_a$$
 (Equation B.6)

B.2.1.3.4 Clear-sky radiation (R_{so}) shall be computed using Equation B.7.

$$R_{so} = \frac{0.75 + 2(\text{Altitude})}{100\ 000} R_a$$
 (Equation B.7)

- **B.2.1.3.5** The relative shortwave radiation (R_s/R_{s0}) shall be determined.
- **B.2.1.3.6** The net solar radiation (R_{ns}) shall be calculated using Equation B.8.

$$R_{ns} = 0.77R_s$$
 (Equation B.8)

B.2.1.3.7
$$\sigma T_{max,K^4}$$
 and $\sigma T_{min,K^4}$ shall be determined using T_{max}, T_{min} and Table B.9.

B.2.1.3.8 R_{nl} and R_n shall be computed.

1

$$R_{nl} = \frac{(\sigma T_{max,K^4} + \sigma T_{min,K^4})}{2} (0.34 - 0.14\sqrt{e_a}) \left(1.35\frac{R_s}{R_{so}} - 0.35\right)$$
$$R_n = R_{ns} - R_{nl}$$
(Equation B.10)

- **B.2.1.3.9** The soil heat flux, G, shall be determined.
- **B.2.1.3.9.1** If the period considered is for a day or ten-day period, $G_{day} \approx 0$.

`

B.2.1.3.9.2 If the period considered is for a month period,

$$G_{\text{month},i} = 0.07(T_{\text{month},i+1} - T_{\text{month},i-1})$$
 (Equation B.11)

B.2.1.3.9.3 If T_{month, i+1} is unknown,

$$G_{month,i} = 0.14(T_{month,i} - T_{month,i-1})$$
 (Equation B.12)

B.2.1.3.9.4If the period considered is for hourly or shorter period,
during daylight: $G_{hr} = 0.1 R_n$
during night time:(Equation B.13)
(Equation B.14)

B.2.1.3.10 The soil heat flux shall be subtracted from net radiation and shall be converted to mm/day.

$$0.408(R_n - G)$$
 (Expression B.5)

B.2.1.4 Reference Evapotranspiration (ET_o), mm/day

B.2.1.4.1 Expression B.2 × Expression B.5

 $\frac{\Delta}{[\Delta + \gamma(1+0.34 u_2)]} \times 0.408(R_n - G) \tag{Expression B.6}$

B.2.1.4.2 Expression B.3 × Expression B.4 × $(e_s - e_a)$

$$\frac{\gamma}{\left[\Delta+\gamma(1+0.34\,u_2)\right]} \times \left[\frac{900}{T_{mean}+273}\right] u_2 \times (e_s - e_a) \text{ (Expression B.7)}$$

B.2.1.4.3 Expression B.6 + Expression B.7

$$ET_{0} = \frac{0.408\Delta(R_{n}-G) + \gamma \frac{900}{T_{mean} + 273} u_{2} (e_{s}-e_{a})}{\Delta + \gamma(1+0.34 u_{2})}$$

Table B.4. Slope of vapor pressure curve for different temperatures

Т	Δ	Т	Δ	Т	Δ	Т	Δ	
°C	kPa/°C	°C	kPa/°C	°C	kPa/°C	°C	kPa/°C	
1.0	0.047	13.0	0.098	25.0	0.189	37.0	0.342	
1.5	0.049	13.5	0.101	25.5	0.194	37.5	0.35	
2.0	0.05	14.0	0.104	26.0	0.199	38.0	0.358	
2.5	0.052	14.5	0.107	26.5	0.204	38.5	0.367	
3.0	0.054	15.0	0.11	27.0	0.209	39.0	0.375	
3.5	0.055	15.5	0.113	27.5	0.215	39.5	0.384	
4.0	0.057	16.0	0.116	28.0	0.22	40.0	0.393	
4.5	0.059	16.5	0.119	28.5	0.226	40.5	0.402	
5.0	0.061	17.0	0.123	29.0	0.231	41.0	0.412	
5.5	0.063	17.5	0.126	29.5	0.237	41.5	0.421	
6.0	0.065	18.0	0.13	30.0	0.243	42.0	0.431	
6.5	0.067	18.5	0.133	30.5	0.249	42.5	0.441	
7.0	0.069	19.0	0.137	31.0	0.256	43.0	0.451	
7.5	0.071	19.5	0.141	31.5	0.262	43.5	0.461	
8.0	0.073	20.0	0.145	32.0	0.269	44.0	0.471	
8.5	0.075	20.5	0.149	32.5	0.275	44.5	0.482	
9.0	0.078	21.0	0.153	33.0	0.282	45.0	0.493	
9.5	0.08	21.5	0.157	33.5	0.289	45.5	0.504	
10.0	0.082	22.0	0.161	34.0	0.296	46.0	0.515	
10.5	0.085	22.5	0.165	34.5	0.303	46.5	0.526	
11.0	0.087	23.0	0.17	35.0	0.311	47.0	0.538	
11.5	0.09	23.5	0.174	35.5	0.318	47.5	0.55	
12.0	0.092	24.0	0.179	36.0	0.326	48.0	0.562	
12.5	0.095	24.5	0.184	36.5	0.334	48.5	0.574	

Z	Ŷ	Z	Ŷ	Z	Ŷ	Z	Ŷ
(m)	kPa/°C	(m)	kPa/°C	(m)	kPa/°C	(m)	kPa/°C
0	0.067	1000	0.06	2000	0.053	3000	0.047
100	0.067	1100	0.059	2100	0.052	3100	0.046
200	0.066	1200	0.058	2200	0.052	3200	0.046
300	0.065	1300	0.058	2300	0.051	3300	0.045
400	0.064	1400	0.057	2400	0.051	3400	0.045
500	0.064	1500	0.056	2500	0.05	3500	0.044
600	0.063	1600	0.056	2600	0.049	3600	0.043
700	0.062	1700	0.055	2700	0.049	3700	0.043
800	0.061	1800	0.054	2800	0.048	3800	0.042
900	0.061	1900	0.054	2900	0.047	3900	0.042
1000	0.06	2000	0.053	3000	0.047	4000	0.041

Table B.5. Psychrometric constant for different altitudes

Table B.6. Saturation vap	or pressure for different temperatures
---------------------------	--

Т	es	Т	e° (T)	T e° (T)		Т	es
°C	kPa	°C	kPa	°C	kPa	°C	kPa
1	0.657	13	1.498	25	3.168	37	6.275
1.5	0.681	13.5	1.547	25.5	3.263	37.5	6.448
2	0.706	14	1.599	26	3.361	38	6.625
2.5	0.731	14.5	1.651	26.5	3.462	38.5	6.806
3	0.758	15	1.705	27	3.565	39	6.991
3.5	0.785	15.5	1.761	27.5	3.671	39.5	7.181
4	0.813	16	1.818	28	3.78	40	7.376
4.5	0.842	16.5	1.877	28.5	3.891	40.5	7.574
5	0.872	17	1.938	29	4.006	41	7.778
5.5	0.903	17.5	2	29.5	4.123	41.5	7.986
6	0.935	18	2.064	30	4.243	42	8.199
6.5	0.968	18.5	2.13	30.5	4.366	42.5	8.417
7	1.002	19	2.197	31	4.493	43	8.64
7.5	1.037	19.5	2.267	31.5	4.622	43.5	8.867
8	1.073	20	2.338	32	4.755	44	9.101
8.5	1.11	20.5	2.412	32.5	4.891	44.5	9.339
9	1.148	21	2.487	33	5.03	45	9.582
9.5	1.187	21.5	2.564	33.5	5.173	45.5	9.832
10	1.228	22	2.644	34	5.319	46	10.086
10.5	1.27	22.5	2.726	34.5	5.469	46.5	10.347
11	1.313	23	2.809	35	5.623	47	10.613
11.5	1.357	23.5	2.896	35.5	5.78	47.5	10.885
12	1.403	24	2.984	36	5.941	48	11.163
12.5	1.449	24.5	3.075	36.5	6.106	48.5	11.447

	Northern Hemisphere												
Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	deg.	
0	2.6	10.4	23	35.2	42.5	39.4	28	14.9	4.9	0.1	0	70	
0.1	3.7	11.7	23.9	35.3	42	38.9	28.6	16.1	6	0.7	0	68	
0.6	4.8	12.9	24.8	35.6	41.4	38.8	29.3	17.3	7.2	1.5	0.1	66	
1.4	5.9	14.1	25.8	35.9	41.2	38.8	30	18.4	8.5	2.4	0.6	64	
2.3	7.1	15.4	26.6	36.3	41.2	39	30.6	19.5	9.7	3.4	1.3	62	
3.3	8.3	16.6	27.5	36.6	41.2	39.2	31.3	20.6	10.9	4.4	2.2	60	
4.3	9.6	14.7	28.4	37	41.3	39.4	32	21.7	12.1	5.5	3.1	58	
5.4	10.8	18.9	29.2	37.4	41.4	39.6	32.6	22.7	13.3	6.7	4.2	56	
6.5	12	20	30	37.8	41.5	39.8	33.2	23.7	14.5	7.8	5.2	54	
7.7	13.2	21.1	30.8	38.2	41.6	40.1	33.8	24.7	15.7	9	6.4	52	
8.9	14.4	22.2	31.5	38.5	41.7	40.2	34.4	25.7	16.9	10.2	7.5	50	
10.1	15.7	23.3	32.2	38.8	41.8	40.4	34.9	26.6	18.1	11.4	8.7	48	
11.3	16.9	24.3	32.9	39.1	41.9	40.6	35.5	27.5	19.2	12.6	9.9	46	
12.5	18	25.3	33.5	39.3	41.9	40.7	35.9	28.4	20.3	13.9	11.1	44	
13.8	19.2	26.3	34.1	39.5	41.9	40.8	36.3	29.2	21.4	15.1	12.4	42	
15	20.4	27.2	34.7	39.7	41.9	40.8	36.7	30	22.5	16.3	13.6	40	
16.2	21.5	28.1	35.2	39.9	41.8	40.8	37	30.7	23.6	17.5	14.8	38	
17.5	22.6	29	35.7	40	41.7	40.8	37.4	31.5	24.6	18.7	16.1	36	
18.7	23.7	29.9	36.1	40	41.6	40.8	37.6	32.1	25.6	19.9	17.3	34	
19.9	24.8	30.7	36.5	40	41.4	40.7	37.9	32.8	26.6	21.1	18.5	32	
21.1	25.8	31.4	36.8	40	41.2	40.6	38	33.4	27.6	22.2	19.8	30	
22.3	26.8	32.2	37.1	40	40.9	40.4	38.2	33.9	28.5	23.3	21	28	
23.4	27.8	32.8	37.4	39.9	40.6	40.2	38.3	34.5	29.3	24.5	22.2	26	
24.6	28.8	33.5	37.6	39.7	40.3	39.9	38.3	34.9	30.2	25.5	23.3	24	
25.7	29.7	34.1	37.8	39.5	40	39.6	38.4	35.4	31	26.6	24.5	22	
26.8	30.6	34.7	37.9	39.3	39.5	39.3	38.3	35.8	31.8	27.7	25.6	20	
27.9	31.5	35.2	38	39	39.1	38.9	38.2	36.1	32.5	28.7	26.8	18	
28.9	32.3	35.7	38.1	38.7	38.6	38.5	38.1	36.4	33.2	29.6	27.9	16	
29.9	33.1	36.1	38.1	38.4	38.1	38.1	38	36.7	33.9	30.6	28.9	14	
30.9	33.8	36.5	38	38	37.6	37.6	37.8	36.9	34.5	31.5	30	12	
31.9	34.5	36.9	37.9	37.6	37	37.1	37.5	37.1	35.1	32.4	31	10	
32.8	35.2	37.2	37.8	37.1	36.3	36.5	37.2	37.2	35.6	33.3	32	8	
33.7	35.8	37.4	37.6	36.6	35.7	35.9	36.9	37.3	36.1	34.1	32.9	6	
34.6	36.4	37.6	37.4	36	35	35.3	36.5	37.3	36.6	34.9	33.9	4	
35.4	37	37.8	37.1	35.4	34.2	34.6	36.1	37.3	37	35.6	34.8	2	
36.2	37.5	37.9	36.8	34.8	33.4	33.9	35.7	37.2	37.4	36.3	35.6	0	

Table B.7. Daily extraterrestrial radiation (MJ/m²/day) for different latitudes for the 15th day of the month

	Northern Hemisphere												
Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	deg.	
0	6.6	11	15.6	21.3	24	24	17.6	12.8	8.3	2.3	0	70	
2.1	7.3	11.1	15.3	19.7	24	22.3	17	12.7	8.7	4.1	0	68	
3.9	7.8	11.2	14.9	18.7	22	20.3	16.4	12.7	9	5.2	1.9	66	
5	8.2	11.2	14.7	17.9	20.3	19.2	16	12.6	9.3	6	3.7	64	
5.7	8.5	11.3	14.4	17.3	19.2	18.4	15.7	12.6	9.5	6.6	4.8	62	
6.4	8.8	11.4	14.2	16.8	18.4	17.7	15.3	12.5	9.7	7.1	5.6	60	
6.9	9.1	11.4	14.1	16.4	17.8	17.2	15.1	12.5	9.9	7.5	6.2	58	
7.3	9.3	11.5	13.9	16	17.3	16.8	14.8	12.4	10.1	7.9	6.7	56	
7.7	9.5	11.5	13.8	15.7	16.8	16.4	14.6	12.4	10.2	8.2	7.1	54	
8	9.7	11.5	13.6	15.4	16.5	16	14.4	12.4	10.3	8.5	7.5	52	
8.3	9.8	11.6	13.6	15.2	16.1	15.7	14.3	12.3	10.4	8.7	7.9	50	
8.6	10	11.6	13.4	15	15.8	15.5	14.1	12.3	10.6	9	8.2	48	
8.8	10.1	11.6	13.3	14.8	15.5	15.2	14	12.3	10.7	9.2	8.5	46	
9.1	10.3	11.6	13.2	14.6	15.3	15	13.8	12.3	10.7	9.4	8.7	44	
9.3	10.4	11.7	13.2	14.4	15	14.8	13.7	12.3	10.8	9.6	9	42	
9.5	10.5	11.7	13.1	14.2	14.8	14.6	13.6	12.2	10.9	9.7	9.2	40	
9.6	10.6	11.7	13	14.1	14.6	14.4	13.5	12.2	11	9.9	9.4	38	
9.8	10.7	11.7	12.9	13.9	14.4	14.2	13.4	12.2	11.1	10.1	9.6	36	
10	10.8	11.8	12.9	13.8	14.3	14.1	13.3	12.2	11.1	10.2	9.7	34	
10.1	10.9	11.8	12.8	13.6	14.1	13.9	13.2	12.2	11.2	10.3	9.9	32	
10.3	11	11.8	12.7	13.5	13.9	13.8	13.1	12.2	11.3	10.5	10.1	30	
10.4	11	11.8	12.7	13.4	13.8	13.6	13	12.2	11.3	10.6	10.2	28	
10.5	11.1	11.8	12.6	13.3	13.6	13.5	12.9	12.1	11.4	10.7	10.4	26	
10.7	11.2	11.8	12.6	13.2	13.5	13.3	12.8	12.1	11.4	10.8	10.5	24	
10.8	11.3	11.9	12.5	13.1	13.3	13.2	12.8	12.1	11.5	10.9	10.7	22	
10.9	11.3	11.9	12.5	12.9	13.2	13.1	12.7	12.1	11.5	11	10.8	20	
11	11.4	11.9	12.4	12.8	13.1	13	12.6	12.1	11.6	11.1	10.9	18	
11.1	11.5	11.9	12.4	12.7	12.9	12.9	12.5	12.1	11.6	11.2	11.1	16	
11.3	11.6	11.9	12.3	12.6	12.8	12.8	12.5	12.1	11.7	11.3	11.2	14	
11.4	11.6	11.9	12.3	12.6	12.7	12.6	12.4	12.1	11.7	11.4	11.3	12	
11.5	11.7	11.9	12.2	12.5	12.6	12.5	12.3	12.1	11.8	11.5	11.4	10	
11.6	11.7	11.9	12.2	12.4	12.5	12.4	12.3	12	11.8	11.6	11.5	8	
11.7	11.8	12	12.1	12.3	12.3	12.3	12.2	12	11.9	11.7	11.7	6	
11.8	11.9	12	12.1	12.2	12.2	12.2	12.1	12	11.9	11.8	11.8	4	
11.9	11.9	12	12	12.1	12.1	12.1	12.1	12	12	11.9	11.9	2	
12	12	12	12	12	12	12	12	12	12	12	12	0	

Table B.8. Mean daylight hours for different latitudes for the 15th day of the month

Т	σΤκ4	Т	σΤκ4	Т	σΤκ4
	(MJ m⁻²d		(MJ m⁻²d		(MJ m ^{−2} d
(°C)	-1)	(°C)	-1)	(°C)	-1)
1	27.7	17	34.75	33	43.08
1.5	27.9	17.5	34.99	33.5	43.36
2	28.11	18	35.24	34	43.64
2.5	28.31	18.5	35.48	34.5	43.93
3	28.52	19	35.72	35	44.21
3.5	28.72	19.5	35.97	35.5	44.5
4	28.93	20	36.21	36	44.79
4.5	29.14	20.5	36.46	36.5	45.08
5	29.35	21	36.71	37	45.37
5.5	29.56	21.5	36.96	37.5	45.67
6	29.78	22	37.21	38	45.96
6.5	29.99	22.5	37.47	38.5	46.26
7	30.21	23	37.72	39	46.56
7.5	30.42	23.5	37.98	39.5	46.85
8	30.64	24	38.23	40	47.15
8.5	30.86	24.5	38.49	40.5	47.46
9	31.08	25	38.75	41	47.76
9.5	31.3	25.5	39.01	41.5	48.06
10	31.52	26	39.27	42	48.37
10.5	31.74	26.5	39.53	42.5	48.68
11	31.97	27	39.8	43	48.99
11.5	32.19	27.5	40.06	43.5	49.3
12	32.42	28	40.33	44	49.61
12.5	32.65	28.5	40.6	44.5	49.92
13	32.88	29	40.87	45	50.24
13.5	33.11	29.5	41.14	45.5	50.56
14	33.34	30	41.41	46	50.87
14.5	33.57	30.5	41.69	46.5	51.19
15	33.81	31	41.96	47	51.51
15.5	34.04	31.5	42.24	47.5	51.84
16	34.28	32	42.52	48	52.16
16.5	34.52	32.5	42.8	48.5	52.49

Table B.9. $\sigma T_{k}{}^{4}$ (Stefan-Boltzman law) at different temperatures

B.2.2 Radiation Method

B.2.2.1 Calculation using the basic radiation formula

Item	Symbol	Unit
Initial data required		
Daily values of maximum temperature	T _{max}	⁰ C
for the month considered		
Daily values of minimum temperature	T _{min}	⁰ C
for the month considered		
Altitude	Z	m
Latitude		0
Actual duration of sunshine	n	h
Solar radiation	Rs	mm/day
Parameters used in calculations		
Extraterrestrial radiation	Ra	mm/day
Mean daylight hours	N	h
Mean daily temperature	T _{daily mean}	⁰ C
Weighting factor	W	-
Reference evapotranspiration	ETo	mm/day

B.2.2.1.1 If measured R_s is not available, the formula below shall be used. $R_{s} = \left(0.25 + 0.50 \frac{n}{N}\right) R_{a}$

B.2.2.1.2 For values of n/N, measured sunshine duration (n) records shall be used and Table B.8 for values of mean daylight hours (N) for different months and latitudes.

B.2.2.1.3 For values of R_a for different months and latitudes, Table B.10 shall be used.

B.2.2.1.4 Compute for T_{daily mean}.

 $T_{max} = \frac{\sum T_{max} daily \, values}{number \, of \, days \, in \, the \, month \, considered}$

 $T_{min} = \frac{\sum T_{min} daily \, values}{number \, of \, days \, in \, the \, month \, considered}$

$$T_{\text{daily mean}} = \frac{T_{\text{max}} + T_{\text{min}}}{2}$$

B.2.2.1.5 Using Table B.11, values of T_{daily mean} and altitude (z), the weighting factor (W) shall be determined.

B.2.2.1.6 ET_0 shall be determined using the formula below.

 $ETo = W \times R_s$

	Northern Hemisphere												
Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	deg.	
3.8	6.1	9.4	12.7	15.8	17.1	16.4	14.1	10.9	7.4	4.5	3.2	50	
4.3	6.6	9.8	13.0	15.9	17.2	16.5	14.3	11.2	7.8	5.0	3.7	48	
4.9	7.1	10.2	13.3	16	17.2	16.6	14.5	11.5	8.3	5.5	4.3	46	
5.3	7.6	10.6	13.7	16.1	17.2	16.6	14.7	11.9	8.7	6.0	4.7	44	
5.9	8.1	11.0	14.0	16.2	17.3	16.7	15.0	12.2	9.1	6.5	5.2	42	
6.4	8.6	11.4	14.3	16.4	17.3	16.7	15.2	12.5	9.6	7.0	5.7	40	
6.9	9.0	11.8	14.5	16.4	17.2	16.7	15.3	12.8	10.0	7.5	3.1	38	
7.4	9.4	12.1	14.7	16.4	17.2	16.7	15.4	13.1	10.6	8.0	6.6	36	
7.9	9.8	12.4	14.8	16.5	17.1	16.8	15.5	13.4	10.8	8.5	7.2	34	
8.3	10.2	12.8	15.0	16.5	17.0	16.8	15.6	13.6	11.2	9.0	7.8	32	
8.8	10.7	13.1	15.2	16.5	17.0	16.8	15.7	13.9	11.6	9.5	8.3	30	
9.3	11.1	13.4	15.3	16.5	16.8	16.7	15.7	14.1	12.0	9.9	8.8	28	
9.8	11.5	13.7	15.3	16.4	16.7	16.6	15.7	14.3	12.3	10.3	9.3	26	
10.2	11.9	13.9	15.4	16.4	16.6	16.5	15.8	14.5	12.6	10.7	9.7	24	
10.7	12.3	14.2	15.5	16.3	16.4	16.4	15.8	14.6	13.0	11.1	10.2	22	
11.2	12.7	14.4	15.6	16.3	16.4	16.3	15.9	14.8	13.3	11.6	10.7	20	
11.6	13.0	14.6	15.6	16.1	16.1	16.1	15.8	14.9	13.6	12.0	11.1	18	
12.0	13.3	14.7	15.6	16.0	15.9	15.9	15.7	15.0	13.9	12.4	11.6	16	
12.4	13.6	14.9	15.7	15.8	15.7	15.7	15.7	15.1	14.1	12.8	12.0	14	
12.8	13.9	15.1	15.7	15.7	15.5	15.5	15.6	15.2	14.4	13.3	12.5	12	
13.2	14.2	15.3	15.7	15.5	15.3	15.3	15.5	15.3	14.7	13.6	12.9	10	
13.6	14.5	15.3	15.6	15.3	15.0	15.1	15.4	15.3	14.8	13.9	13.3	8	
13.9	14.8	15.4	15.4	15.1	14.7	14.9	15.2	15.3	15.0	14.2	13.7	6	
14.3	15.0	15.5	15.5	14.9	14.4	14.6	15.1	15.3	15.1	14.5	14.1	4	
14.7	15.3	15.6	15.3	14.6	14.2	14.3	14.9	15.3	15.3	14.8	14.4	2	
15.0	15.5	15.7	15.3	14.4	13.9	14.1	14.8	15.3	15.4	15.1	14.8	0	

Table B.10. Extraterrestrial radiation expressed in equivalent evaporation (mm/day) for different latitudes

Temperature (ºC)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Altitude (z)									Weig	ghting l	Factor	(W)								
0	0.43	0.46	0.49	0.52	0.55	0.58	0.61	0.64	0.66	0.68	0.71	0.73	0.75	0.77	0.78	0.8	0.82	0.83	0.84	0.85
500	0.45	0.48	0.51	0.54	0.57	0.602	0.62	0.65	0.67	0.7	0.72	0.74	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.86
1000	0.46	0.49	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77	0.79	0.8	0.82	0.83	0.85	0.86	0.87
2000	0.49	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77	0.79	0.81	0.82	0.84	0.85	0.86	0.87	0.88
3000	0.52	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.75	0.77	0.79	0.81	0.82	0.84	0.85	0.86	0.88	0.88	0.89
4000	0.55	0.58	0.61	0.64	0.66	0.69	0.71	0.73	0.76	0.78	0.79	0.81	0.83	0.84	0.85	0.86	0.88	0.89	0.9	0.9

Table B.11. Values of Weighting Factor (W) for the Effect of Radiation ET₀ at Different Temperatures and Altitudes

B.2.2.2 Calculation using graphs developed based on the basic radiation formula

Data Required	Symbol	Unit
Estimate of daytime wind	U _{day}	⁰ C
Estimate of mean relative humidity	RH _{mean}	%
Elevation above sea level	Z	m

B.2.2.2.1 General levels of RH_{mean} and U_{day} shall be determined using Table B.12. If estimates of 24-hour mean wind are available, convert these to daytime wind using the correction factor, shown in Table B.13.

B.2.2.2.2 ET_o shall be obtained using Figure B.1, previously determined $W \times R_s$ from section B.2.2.1.6 and general levels of RH_{mean} and U_{day}.

RH _{mean}		REMARKS
low	<40%	RH _{mean} is the average of maximum and minimum
medium-low	40-55%	relative humidity.
medium-high	n 55%-70%	Whereas RH _{min} will vary strongly, if RH _{max} equals
high	>70%	90 to 100% for humid climates, equals 80 to
		100% for semi-arid and arid climates where T_{min}
		is 20-25 ^o C lower than T _{max} . In arid areas RH _{max}
		may be 25-40% when T _{min} is 15ºC lower than
		T _{max} .
WIND		
light	<2 m/s	2m/s : wind is felt on face and leaves start to
		rustle
moderate	2-5 m/s	5m/s : twigs move paper blows away, flags fly
strong	5-8 m/s	8m/s : dust rises, small branches move
very strong	>8 m/s	>8 m/s : small trees start to move, waves
		form on inland water
		For rough estimation purposes, sum of several
		wind-speed observations divided by number of
		readings in m/s.

SOURCE: FAO Irrigation and Drainage Paper No. 24, 1977

Table B.13. Correction Factors for 24-hour mean wind estimates to obtain $$U_{day}$$

U _{day} /U _{night} ratio	1.0	1.5	2.0	2.5	3.0	3.5	4.0
correction factor for U _{day}	1.0	1.2	1.33	1.43	1.5	1.56	1.6
COURCE, EAO Invigation and Drainage Dance No. 24, 1077							

Figure B.1. Prediction of ET^o from W x R_s for different conditions of mean relative humidity and day time wind SOURCE: FAO Irrigation and Drainage Paper No. 56, 1998

B.2.3 Blaney-Criddle Method

B.2.3.1 Calculation using the basic Blaney-Criddle Formula

B.2.3.1.1 The following data shall be obtained:

- maximum temperature daily values for the month considered
- minimum temperature daily values for the month considered
- latitude

B.2.3.1.2 The mean daily temperature (T_{mean}) shall be computed as follows:

$$T_{max} = \frac{\sum T_{max} \text{daily values}}{\text{number of days in the month considered}}$$

 $T_{min} = \frac{\sum T_{min} daily values}{number of days in the month considered}$

$$T_{\text{daily mean}} = \frac{T_{\text{max}} + T_{\text{min}}}{2}$$

B.2.3.1.3 The mean daily percentage of annual daytime hours (p) shall be determined using the latitude of the area considered and Table B.14.

Table B.14. Mean daily percentage (p) of annual daytime hours fordifferent latitudes

Latitudo	North	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Latitude	South	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June
60		0.15	0.2	0.26	0.32	0.38	0.41	0.4	0.34	0.28	0.22	0.17	0.13
55		0.17	0.21	0.26	0.32	0.36	0.39	0.38	0.33	0.28	0.23	0.18	0.16
50		0.19	0.23	0.27	0.31	0.34	0.39	0.35	0.32	0.28	0.24	0.2	0.18
45		0.2	0.23	0.27	0.3	0.34	0.35	0.34	0.32	0.28	0.24	0.21	0.2
40		0.22	0.24	0.27	0.3	0.32	0.34	0.33	0.31	0.28	0.25	0.22	0.21
35		0.23	0.25	0.27	0.29	0.31	0.32	0.32	0.3	0.28	0.25	0.23	0.22
30		0.24	0.25	0.27	0.29	0.31	0.32	0.31	0.3	0.28	0.26	0.24	0.23
25		0.24	0.26	0.27	0.29	0.3	0.31	0.31	0.29	0.28	0.26	0.25	0.24
20		0.25	0.26	0.27	0.28	0.29	0.3	0.3	0.29	0.28	0.26	0.25	0.25
15		0.26	0.26	0.27	0.28	0.29	0.29	0.29	0.28	0.28	0.27	0.26	0.25
10		0.27	0.27	0.27	0.28	0.28	0.29	0.29	0.28	0.28	0.27	0.26	0.26
5		0.27	0.27	0.27	0.28	0.28	0.28	0.28	0.28	0.28	0.27	0.27	0.27
0		0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27

B.2.3.1.1 ET₀ shall be computed using the formula below.

$$ETo = p(0.46T_{mean} + 8)$$

B.2.3.2 Calculation using graphs developed based on Blaney-Criddle Formula

B.2.3.2.1 General levels of RH_{min} , n/N, and U_{day} shall be determined using the Table B.14. If estimates of 24-hour mean wind are available, these shall be converted to daytime wind using the correction factor, shown in Table B.15.

B.2.3.2.2 ET_0 shall be obtained using Figure B.2 and previously determined general levels of RH_{min}, n/N, and U_{day}.

RH _{min}		REMARKS
low	<20%	RH _{min} is the lowest humidity during daytime and
medium	20-50%	is reached usually at 14.00 to 16.00 hours from
high	>50%	hygrograph or wet and dry bulb thermometer.
		For rough estimation purposes, when read at
		12.00 hrs, subtract 5 to 10 for humid climates and
		up to 30 for desert climates.
n/N		
low	<0.6	n/N > 0.8 : near bright sunshine all day
medium	0.6-0.8	n/N 0.6-0.8 : some 40% of daytime hours full
high	>0.8	cloudiness or partially clouded for
		70% of daytime hours
Uday		
light	<2 m/s	2m/s : wind is felt on face and leaves start to
		rustle
moderate	2-5 m/s	5m/s : twigs move paper blows away, flags fly
strong	5-8 m/s	8m/s : dust rises, small branches move
very strong	>8 m/s	>8 m/s : small trees start to move, waves
		form on inland water
		For rough estimation purposes, sum of several
		wind-speed observations divided by number of
		readings in m/s.

Table B.15. Estimates of RH_{min}, n/N and U_{day} translated to general levels

Figure B.2. Prediction of ET₀ from Blaney-Criddle f factor Where f = p(0.46t + 8), for different conditions of minimum relative humidity, sunshine duration and daytime wind SOURCE: FAO Irrigation and Drainage Paper No. 56, 1998

B.2.4 Pan Evaporation Method

B.2.4.1 The following data shall be obtained:

- pan evaporation data
- type of pan used
- pan environment
- mean relative humidity
- windspeed at 2m (u₂)

B.2.4.2 The type of evaporation pan shall be determined. It can be either Class A pan, shown in Figure B.3 or Colorado sunken pan, shown in Figure B.4. Description of both pans is listed in Table B.16.

Items	Class A Pan	Colorado Sunken Pan
Shape	circular	square
Diameter, cm	120.7	92 or 100
Depth, cm	25	46 or 50
Material	gauge 22 galvanized iron or 0.8 mm Monel metal	3mm thick iron
Position	mounted on a wooden pen frame platform 15 cm above ground level	in the ground with the rim 5cm above the soil level
Water Level	filled to 5 cm below the rim and not allowed to drop more than 7.5 cm below the rim	at or slightly below ground level i.e, 5-7.5 cm below the rim
Maintenance	 -water is regularly renewed at least weekly -if galvanized, painted annually with aluminum paint -no screens over the pan protected by fences to keep animals from drinking 	-water is regularly renewed at least weekly -painted with black tar paint -no screens over the pan protected by fences to keep animals from drinking
Site	-under grass, 20 m by 20 m, and open on all sides -located in the center or on the leeward side of large cropped fields	-under grass, 20 m by 20 m, and open on all sides -located in the center or on the leeward side of large cropped fields
Stilling Well	-situated in the pan near one edge -metal cylinder about 10 cm in diameter and 20 about cm deep with a small hole in the bottom	-situated in the pan near one edge -metal cylinder about 10 cm in diameter and 20 about cm deep with a small hole in the bottom

Table B.16. Description of Class A Pan and Colorado Sunken Pan

Figure B.3. Details of a Class A pan SOURCE: FAO Irrigation and Drainage Paper No. 56, 1998

Figure B.4. Details of a Colorado Sunken Pan SOURCE: FAO Irrigation and Drainage Paper No. 56, 1998

B.2.4.3 Pan siting shall be evaluated. Figure B.5 and Figure B.6 illustrates two cases of pan siting. The fetch shall determine the state of the upwind buffer zone. The first case, shown in Figure B.5, the pan is situated on a short green (grass) cover and surrounded by fallow soil. The second case on the other hand, shown in Figure B.6, the pan is situated on a fallow soil and surrounded by green crops.

Figure B.6. Pan situated on fallow soil SOURCE: FAO Irrigation and Drainage Paper No. 56, 1998

B.2.4.4 The appropriate pan coefficient shall be determined using wind data, mean relative humidity. Pan coefficients for Class A pan are given in Table B.17. For Colorado sunken pans, Table B.18 shall be used.

B.2.4.5 Table B.19 presents equations that can be used in determining K_{pan}.

B.2.4.6 In case of missing data, for wind speed (u₂), a global value of 2 m/s can be used. For RH_{mean}, it can be approximated as $RH_{mean} = \frac{50 e^{o}(T_{min})}{e^{o}(T_{max})+50}$. Values for $e^{o}(T_{min})$ and $e^{o}(T_{max})$ shall be obtained using Table B.6.

Table B.17. Pan coefficients (K _p) for Class A pan for different pan siting and
environment and different levels of mean relative humidity and wind
speed

Class A pan	Case A: Pan placed	Case B: Pan placed in dry fallow area						
RH mean		low	medium	high		low	medium	high
(%) →		< 40	40-70	> 70		< 40	40-70	> 70
Wind speed (m/s)	Windward side distance of green crop (m)				Windward side distance of dry fallow (m)			
Light	1	0.55	0.65	0.75	1	0.7	0.8	0.85
< 2	10	0.65	0.75	0.85	10	0.6	0.7	0.8
	100	0.7	0.8	0.85	100	0.55	0.65	0.75
	1000	0.75	0.85	0.85	1000	0.5	0.6	0.7
Moderate	1	0.5	0.6	0.65	1	0.65	0.75	0.8
2 to 5	10	0.6	0.7	0.75	10	0.55	0.65	0.7
	100	0.65	0.75	0.8	100	0.5	0.6	0.65
	1000	0.7	0.8	0.8	1000	0.45	0.55	0.6
Strong	1	0.45	0.5	0.6	1	0.6	0.65	0.7
5 to 8	10	0.55	0.6	0.65	10	0.5	0.55	0.65
	100	0.6	0.65	0.7	100	0.45	0.5	0.6
	1000	0.65	0.7	0.75	1000	0.4	0.45	0.55
Very Strong	1	0.4	0.45	0.5	1	0.5	0.6	0.65
> 8	10	0.45	0.55	0.6	10	0.45	0.5	0.55
	100	0.5	0.6	0.65	100	0.4	0.45	0.5
	1000	0.55	0.6	0.65	1000	0.35	0.4	0.45

Table B.18. Pan coefficients (K_p) for Colorado sunken pan for different pan siting and environment and different levels of mean relative humidity and wind speed

Sunken Colorado	Case A: Pan placed in short green cropped area				Case B: Pa	n place area	d in dry fal a	low
RH mean (%) →		low < 40	medium 40-70	high > 70		low < 40	medium 40-70	high > 70
Wind speed (m/s)	Windward side distance of green crop (m)				Windward side distance of dry fallow (m)			
Light	1	0.75	0.75	0.8	1	1.1	1.1	1.1
< 2	10	1	1	1	10	0.85	0.85	0.85
	≥ 100	1.1	1.1	1.1	100	0.75	0.75	0.8
					1000	0.7	0.7	0.75
Moderate	1	0.65	0.7	0.7	1	0.95	0.95	0.95
2 to 5	10	0.85	0.85	0.9	10	0.75	0.75	0.75
	≥ 100	0.95	0.95	0.95	100	0.65	0.65	0.7
					1000	0.6	0.6	0.65
Strong	1	0.55	0.6	0.65	1	0.8	0.8	0.8
5 to 8	10	0.75	0.75	0.75	10	0.65	0.65	0.65
	≥ 100	0.8	0.8	0.8	100	0.55	0.6	0.65
					1000	0.5	0.55	0.6
Very Strong	1	0.5	0.55	0.6	1	0.7	0.75	0.75
> 8	10	0.65	0.7	0.7	10	0.55	0.6	0.65
	≥ 100	0.7	0.75	0.75	100	0.5	0.55	0.6
					1000	0.45	0.5	0.55

Class A pan with	$K_p = 0.108 - 0.286u_2 + 0.0422ln(FET)$							
green fetch	+ $0.1434 \ln(\text{RH}_{\text{mean}})$							
	$- 0.000631[ln(FET)]^2ln(RH_{mean})$							
Class A pan with	$K_{\rm p} = 0.61 + 0.00341 \text{RH}_{\rm mean} - 0.000162 u_2 \text{RH}_{\rm mean}$							
dry fetch	$-0.00000959u_2FET + 0.00327u_2ln(FET)$							
	$-0.00289u_2\ln(86.4u_2)$							
	$-0.0106u_2\ln(86.4u_2)\ln(FET)$							
	$+ 0.00063[\ln(\text{FET})]^2\ln(86.4u_2)$							
Colorado	$K_{p} = 0.87 + 0.119 \ln(FET) - 0.0157 [\ln(86.4u_{2})]^{2}$							
sunken pan	$-0.0019[\ln(\text{FET})]^2\ln(86.4u_2)$							
with green fetch	$+ 0.013 \ln(86.4 u_2) \ln(RH_{mean})$							
	$-0.000053 \ln(86.4u_2) \ln(\text{FET}) \text{RH}_{\text{mean}}$							
Colorado	$K_p = 1.145 - 0.080u_2 + 0.000903(u_2)^2 \ln(RH_{mean})$							
sunken pan	$-0.0964\ln(\text{FET}) + 0.0031u_2\ln(\text{FET})$							
with dry fetch	+ $0.0015[\ln(FET)]^2\ln(RH_{mean})$							
Coefficients and	K _p pan coefficient							
parameters	u ₂ average daily wind speed at 2m height (m/s)							
	RH_{mean} average daily humidity (%) = $(RH_{max} + RH_{min})/2$							
	FET fetch, or distance of the identified surface type (grass							
	or short green agricultural crop for case							
	A, dry crop or bare soil for case B upwind of the							
	evaporation pan)							
Range for	$1m \le FET 1000m$							
variables	$30\% \leq \text{RH}_{\text{mean}} \leq 84\%$							
	$1m/s \le u_2 \le 8m/s$							

Table B.19. Regression equations for determining pan coefficients

SOURCE: FAO Irrigation and Drainage Paper No. 56, 1998

B.2.4.7 For some conditions not accounted for in Table B.17 and Table B.18, adjustments for K_p may be necessary. Refer to Table B.20- for the adjustments.

Table D 20	Suggested	Adjuct	monte	for I	7
I able D.20.	Suggesteu	Aujusi	ments	101 1	Δр

Conditions		Adjustments for K _p
Location	Climate	
no agricultural development, extensive	arid, windy	may need to be reduced up to 20%
areas of bare soils, desert or semi-desert	moderate levels of wind, temperature and relative humidity	may need to be reduced up by 5-10%
	humid, cool	no or little reduction
pans in small enclosure but surrounded by tall crops	dry, windy	may need to be increased by up to 30%

	calm, humid	may need to be increased by 5-10%	
pan is painted black	results may increase by up to		
	10%		
when water level in Class	may result in errors of up to		
the accepted standard of	15%		
below the rim			
screens mounted over pa	may reduce by 10%		

B.2.4.8 The average pan evaporation (E_{pan}) for the period considered shall be computed.

B.2.4.9 ET_0 shall be computed using the formula below.

$$ET_o = K_p \times E_{pan}$$

where $ET_o =$ reference evapotranspiration, mm/day $K_p =$ pan coefficient

 $E_{pan} = pan evaporation, mm/day$

ANNEX C (normative)

Determination of Soil Texture

C.1 The standard method in determining soil texture is described in ASTM D 422 – Standard Test Method for Particle-Size Analysis of Soils

C.2 If the necessary laboratory equipment are not available, soil texture can be determined through feel analysis as shown in Figure C.1

Figure C.1. Flow diagram in determining soil texture by feel analysis SOURCE: USDA, National Engineering Handbook, 1993

ANNEX D (informative)

Hydrologic Frequency Analysis

D.1 Selection of data

D.1.1 Annual Series

Only the largest event for each year shall be selected and shall be used when design is controlled by the most critical condition.

D.1.2 Partial Duration Series

All values above a given minimum value shall be chosen regardless of the frequency within a given time period. This shall be used if the second value (or lower) of the year would also affect the design of structures.

D.2 Determination of Statistical Parameters

D.2.1 Normal Distribution Method

D.2.1.1 Events shall be ranked from the highest to the lowest with the largest event being given a rank, m= 1, the second largest event, m = 2, and so on.

D.2.1.2 The arithmetic mean, M shall be computed.

$$M = \frac{\sum X}{N}$$

where:

X is the magnitude of events N is the number of events

D.2.1.3 The standard deviation shall be computed.

$$S = \sqrt{\frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N - 1}}$$

where:

X is the magnitude of events

N is the number of events

D.2.1.4 Using arithmetic-probability plotting paper, the following values shall be plotted at their corresponding probabilities as listed below and shall form a straight line.

• M at 50

- M + S at 15.9 %
- M S at 84.1%

D.2.1.5 A rough estimate of the goodness of fit of the distribution to the data shall be determined by plotting the probability of occurrence (P) of the events using the equation

$$P = \frac{m}{N+1}$$

where:

m is the rankN is the number of events

D.2.1.6 The goodness of fit is an eyeball estimate. If found satisfactory, the resulting straight line may be used in predicting the frequency of occurrence of an event of a given magnitude.

D.2.2 Log-Normal Distribution Method

D.2.2.1 Events shall be ranked from the highest to the lowest with the largest event being given a rank, m= 1, the second largest event, m = 2, and so on.

D.2.2.2 The variables shall be transformed in their corresponding logarithmic values and the mean shall be computed as follows:

$$M = Anti \log \frac{\sum (\log X)}{N}$$

D.2.2.3 The standard deviation (S) shall be computed as follows

$$S = Anti \log \sqrt{\frac{\sum (\log X)^2 - (\sum \log X)^2 / N}{N - 1}}$$

D.2.2.4 Using a log-probability paper, the values shall be plotted at their corresponding probabilities as listed below and shall form a straight line.

- M at 50%
- M x S at 15.9%
- M / S at 84.1%

D.2.2.5 A rough estimate of the goodness of fit of the distribution to the data shall be determined by plotting the probability of occurrence (P) of the events using the equation

$$P = \frac{m}{N+1}$$

D.2.2.6 The goodness of fit is an eyeball estimate. If found satisfactory, the resulting straight line may be used in predicting the frequency of occurrence of an event of a given magnitude.

D.2.3 Pearson Type III Method

D.2.3.1 Variables shall be transformed into their logarithms and the mean shall be computed using the equation

$$M = \frac{\sum \log X}{N}$$

D.2.3.2 The standard deviation of the logarithms shall be computed.

$$S = \sqrt{\frac{\sum (\log X)^2 - (\sum \log X)^2 / N}{N - 1}}$$

D.2.3.3 The coefficient of skewness (g) shall be computed.

$$g = \frac{\sum [\log X - (\sum \log X/N)]^3}{(N-1)S^3} x \frac{N}{N-2}$$

D.2.3.4 Logarithms of the variable at selected recurrence intervals or percent chance shall be computed.

$$\log X = M + KS$$

D.2.3.5 K shall be obtained from the Table D.1 using the computed value of g and recurrence interval.

Table D.1. K values for positive skew coefficients

			Recuri	ence	Interval	In	Years				
Skew	1.0101	1.053	1.111	1.250	2	5	10	25	50	100	200
coefficient	00	05	00	Per	rcent	C	hanc	e	2		0.5
(g)	99	95	90	80	50	20	10	4	Z	1	0.5
3.0	-0.667	-0.665	-0.660	-0.636	-0.396	0.420	1.180	2.278	3.152	4.051	4.970
2.9	-0.690	-0.688	-0.681	-0.651	-0.390	0.440	1.195	2.277	3.134	4.013	4.909
2.8	-0.714	-0.711	-0.702	-0.666	-0.384	0.460	1.210	2.275	3.114	3.973	4.847
2.7	-0.740	-0.736	-0.724	-0.681	-0.376	0.479	1.224	2.272	3.093	3.932	4.783
2.6	-0.769	-0.762	-0.747	-0.696	-0.368	0.499	1.238	2.267	3.071	3.889	4.718
2.5	-0.799	-0.790	-0.771	-0.711	-0.360	0.518	1.250	2.262	3.048	3.845	4.652
2.4	-0.832	-0.819	-0.795	-0.725	-0.351	0.537	1.262	2.256	3.023	3.800	4.584
2.3	-0.867	-0.850	-0.819	-0.739	-0.341	0.555	1.274	2.248	2.997	3.753	4.515
2.2	-0.905	-0.882	-0.844	-0.752	-0.330	0.574	1.284	2.240	2.970	3.705	4.444
2.1	-0.946	-0.914	-0.869	-0.765	-0.319	0.592	1.294	2.230	2.942	3.656	4.372
2.0	-0.990	-0.949	-0.895	-0.777	-0.307	0.609	1.302	2.219	2.912	3.605	4.298
1.9	-1.037	-0.984	-0.920	-0.788	-0.294	0.627	1.310	2.207	2.881	3.553	4.223
1.8	-1.087	-1.020	-0.945	-0.799	-0.282	0.643	1.318	2.193	2.848	3.499	4.147
1.7	-1.140	-1.056	-0.970	-0.808	-0.268	0.660	1.324	2.179	2.815	3.444	4.069
1.6	-1.197	-1.093	-0.994	-0.817	-0.254	0.675	1.329	2.163	2.780	3.388	3.990
1.5	-1.256	-1.131	-1.018	-0.825	-0.240	0.690	1.333	2.146	2.743	3.330	3.910
1.4	-1.318	-1.168	-1.041	-0.832	-0.225	0.705	1.337	2.128	2.706	3.271	3.828
1.3	-1.333	-1.206	-1.064	-0.838	-0.210	0.719	1.339	2.108	2.666	3.211	3.745
1.2	-1.449	-1.243	-1.086	-0.844	-0.195	0.732	1.340	2.087	2.626	3.149	3.661
1.1	-1.518	-1.280	-1.107	-0.848	-0.180	0.745	1.341	2.066	2.585	3.087	3.575
1.0	-1.588	-1.317	-1.128	-0.852	-0.164	0.758	1.340	2.043	2.542	3.022	3.489
0.9	-1.660	-1.353	-1.147	-0.854	-0.148	0.769	1.339	2.018	2.498	2.957	3.401
0.8	-1.733	-1.388	-1.166	-0.856	-0.132	0.780	1.336	1.993	2.453	2.891	3.312
0.7	-1.805	-1.423	-1.183	-0.857	-0.116	0.790	1.333	1.967	2.407	2.824	3.223
0.6	-1.880	-1.458	-1.200	-0.857	-0.099	0.800	1.328	1.939	2.359	2.755	3.132
0.5	-1.955	-1.491	-1.216	-0.856	-0.083	0.808	1.323	1.910	2.311	2.686	3.041
0.4	-2.029	-1.524	-1.231	-0.855	-0.066	0.816	1.317	1.880	2.261	2.615	2.949
0.3	-2.104	-1.555	-1.245	-0.853	-0.050	0.824	1.309	1.849	2.211	2.544	2.856
0.2	-2.178	-1.586	-1.258	-0.850	-0.033	0.830	1.301	1.818	2.159	2.472	2.763
0.1	-2.252	-1.616	-1.270	-0.846	-0.017	0.836	1.292	1.785	2.107	2.400	2.670
0.0	-2.326	-1.645	-1.282	-0.842	0.000	0.842	1.282	1.751	2.054	2.326	2.576

ANNEX E (informative)

Determination of Effective Rainfall Using ADB Method

E.1 Daily rainfall data of at least 10 years shall be obtained.

E.2 The average values of rainfall for each decade shall be computed. The rainfall distribution shall be determined from these values as shown in Figure E.1

E.3 The crop water requirement in decadal basis shall be known and represented in the graph. It must be noted that the crop water requirement changes by growth stage.

Rainfall values below the determined decadal crop water requirement **E.4** shall be the effective rainfall and the values above become surface waste.

Figure E. 1 Rainfall distribution Diagram

Percent effective rainfall =
$$\frac{\text{effective rainfall}}{\text{total rainfall}} \times 100$$

ANNEX F (normative)

Determination of Land Soaking Requirements

F.1 The following physical properties of soil based on textural shall be determined: porosity (n), field capacity (FC), permanent wilting point (PWP) and apparent specific gravity (A_s) .

Soil	Infiltration*	Total	Annarent	Field	Permanent
Texture	and	Pore	Specific	Canacity	Wilting
i chicui c	Permeability	Space	Gravity(%)	(%)	Point
	(cm/hr)	(%)		(70)	(%)
Sandy	5	38	1.65	9	4
5	(2.5-25)	(32-42)	(1.55-1.80)	(6-12)	(2-6)
Sandy	2.5	43	1.50	14	6
Loam	(1.3-7.6)	(40-47)	(1.40-1.60)	(10-18)	(4-8)
Loam	1.3	47	1.40	22	10
	(0.8-2.0)	(43-49)	(1.35-1.40)	(18-26)	(8-12)
Clay	0.8	49	1.35	27	13
Loam	(0.25-1.5)	(47-51)	(1.30-1.40)	(23-31)	(11-15)
Silty Clay	0.25	51	1.30	31	15
	(0.03-0.50)	(49-53)	(1.30-1.40)	(27-35)	(13-17)
Clay	0.5	53	1.25	35	17
_	(0.01-0.1)	(51-55)	(1.20-1.30)	(31.39)	(15-19)
NOTE Normal ranges re shown in parentheses					
*Intake rates vary gently wih soil structure and structural stability, even					
beyond the normal ranges shown above					

Table F.1. Representative physical properties of soils

F.2 The depth of root zone (d_{rz}) of the crop shall be determined. For lowland rice, $d_{rz} = 300$ mm.

F.3 Residual moisture content (RMC) shall be obtained.

F.4 Land soaking requirement (LSR) shall be computed using the formula

$$LSR = \frac{[n - (RMC \times A_s)] \times d_{rz}}{100}$$

ANNEX G (informative)

Determination of Conveyance Losses

G.1 Conveyance loss is the sum of the seepage and percolation losses in the conveyance structures (main canal to the sub-laterals), leakage through gates and left-over water in the canals and leakage through canal dikes.

G.1.2 Seepage and percolation losses in the conveyance structures (unlined canals)

$$(S\&P)_{canals} = A_w \times S\&P$$
 rate

where:

(S & P)canals	is the seepage and percolation losses in the canals
Aw	is the wetted area = wetted perimeter x length of
	canal
S & P rate	is the rate of seepage and percolation

G.1.3 Leakage through gates and left over water in the canal shall be estimated as 5% of the total farm water requirement.

G.1.4 Leakage through canal dikes shall be computed the same way as the seepage and percolation losses in canals

ANNEX H (normative)

Formulas

H.1 Crop Water Requirement

 $CWR = ET_a + (S \& P)_{field}$

where:

CWR	is the crop water requirement (mm/day)
ETa	is the actual evapotranspiration (mm/day)
(S & P) _{field}	is the seepage and percolation in the field (mm/day)

H.2 Actual Evapotranspiration

$$ET_a = = ET_o \times k_c$$

where:

ET_a is the actual evapotranspiration (mm/day)

- ET_{o} is the reference evapotranspiration (mm/day)
- $k_c \qquad \text{ is the crop coefficient } \\$

H.3 Farm Water Requirement

FWR = CWR - ER + LPWR + farm ditch losses

$$FWR = \frac{CWR - ER + LPWR}{E_a}$$

where:

CWR is the crop water requirement (mm)
ER is the effective rainfall (mm)
LPWR is the land preparation water requirement (mm)
E_a is the application efficiency (mm)

H.4 Land Soaking Requirement

$$LSR = \frac{[n - (RMC \times A_s)] \times D_{rz}}{100}$$

where:

LSR is the land soaking requirement (mm)

n is the soil porosity

- RMC is the residual moisture content
- A_s is the apparent specific gravity
- D_{rz} is the depth of root zone (mm)

H.5 Land Preparation Water Requirement

$$LPWR = LSR + SW + ET_o$$

where:

- LPWR is the land preparation water requirement (mm)
- LSR is the land soaking requirement (mm)
- SW is the standing water (mm)
- ET_o is the reference evapotranspiration (mm)

H.6 Farm Ditch Losses

Farm ditch losses = $(S \& P)_{farm \, ditch} \times P \times L$

where:

(S & P)_{farm ditch} is theseepage and percolation rate (mm/day)

- P is the wetted perimeter (m)
- L is the length of farm ditch (m)

H.7 Diversion Water Requirements

DWR = FWR + conveyance losses or

$$DWR = \frac{FWR}{E_c}$$

where:

DWR is the diversion water requirement (mm)

FWR is the farm water requirement (mm)

E_c is the conveyance efficiency

Technical Working Group (TWG) for the Development of Philippine National Standard for Determination of Irrigation Water Requirements

Chair

Engr. Bonifacio S. Labiano National Irrigation Administration

Members

Engr. Felimar M. Torizo Board of Agricultural Engineering Professional Regulation Commission

Dr. Armando N. Espino Jr.

Central Luzon State University

Dr. Roger A. Luyun Jr. University of the Philippines Los Baños

Dr. Teresita S. Sandoval

Bureau of Soils and Water Management Department of Agriculture

Dr. Elmer D. Castillo

Philippine Society of Agricultural Engineers

Engr. Francia M. Macalintal

Philippine Council for Agriculture and Fisheries Department of Agriculture

Project Managers

Engr. Darwin C. Aranguren

Engr. Romulo E. Eusebio

Engr. Mary Louise P. Pascual

Engr. Fidelina T. Flores

Engr. Marie Jehosa B. Reyes

Ms. Micah L. Araño

Ms. Caroline D. Lat

Mr. Gerald S. Trinidad

University of the Philippines Los Baños – Agricultural Machinery Testing and Evaluation Center