PHILIPPINE NATIONAL STANDARD

PNS/BAFS/PAES 220:2017 ICS 65.060.35

Conveyance Systems – Performance Evaluation of Open Channels – Determination of Conveyance Loss by Inflow-Outflow Method

BUREAU OF AGRICULTURE AND FISHERIES STANDARDS BPI Compound Visayas Avenue, Diliman, Quezon City 1101 Philippines Phone (632) 920-6131; (632) 455-2856; (632) 467-9039; Telefax (632) 455-2858

E-mail: bafpsda@yahoo.com.ph Website: www.bafps.da.gov.ph

PHILIPPINE NATIONAL STANDARDPNS/BAFS/PAES 220:2017ConveyanceSystems - PerformanceEvaluation of Open Channels -Determination of Conveyance Loss by Inflow-Outflow Method

Foreword

The formulation of this national standard was initiated by the Agricultural Machinery Testing and Evaluation Center (AMTEC) under the project entitled "Enhancement of Nutrient and Water Use Efficiency Through Standardization of Engineering Support Systems for Precision Farming" funded by the Philippine Council for Agriculture, Aquaculture and Forestry and Natural Resources Research and Development -Department of Science and Technology (PCAARRD - DOST).

As provided by the Republic Act 10601 also known as the Agricultural and Fisheries Mechanization Law (AFMech Law of 2013), the Bureau of Agriculture and Fisheries Standards (BAFS) is mandated to develop standard specifications and test procedures for agricultural and fisheries machinery and equipment. Consistent with its standards development process, BAFS has endorsed this standard for the approval of the DA Secretary through the Bureau of Agricultural and Fisheries Engineering (BAFE) and to the Bureau of Philippine Standards (BPS) for appropriate numbering and inclusion to the Philippine National Standard (PNS) repository.

This standard has been technically prepared in accordance with BPS Directives Part 3:2003 – Rules for the Structure and Drafting of International Standards.

The word "shall" is used to indicate mandatory requirements to conform to the standard.

The word "should" is used to indicate that among several possibilities one is recommended as particularly suitable without mentioning or excluding others.

PHILIPPINE NATIONAL STANDARD

PNS/BAFS/PAES 220:2017

Conveyance Systems – Performance Evaluation of Open Channels – Determination of Conveyance Loss by Inflow-Outflow Method

1 Scope

This standard specifies the method of determination of seepage and percolation in open channels by inflow-outflow.

2 References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this National Standard:

ISO 8368:1999 Flow Measurements in Open Channels Using Structures – Guidelines for Selection of Structure

3 Definitions

For the purpose of this standard, the following terms shall apply:

3.1

conveyance loss

loss of water from a channel during transport due to seepage and percolation

3.2

water balance

accounting of water inflows, such as irrigation and rainfall, and outflows, such as evaporation, seepage and percolation

4 Principle of Inflow-Outflow Method

Inflow-outflow is one of the methods used to measure the conveyance losses in open channels where a section of the selected channel shall be analyzed using the water balance approach as shown in Figure 1.

The rates of flow of water in the selected channel shall be measured using one of the flow measuring devices/structures and an appropriate flow measurement technique. The difference in the inflow and outflow rates shall be identified as the conveyance losses.

Figure 1. Water balance in an open channel

5 Site Selection

5.1 The channel section to be considered shall be accessible for measurement.

5.2 The channel section should be at least 50 m with uniform cross section and grade between the inflow and outflow measuring points.

5.3 Channels with adjoining depressions such as creeks or rivers shall be avoided.

5.4 Bends, steep slopes and segments containing turnouts, valves, gates and other structures shall be avoided.

6 Flow Measuring Structures and Devices

The appropriate flow measuring structures and devices should be selected based on ISO 8368:1999 – Flow Measurements in Open Channels Using Structures – Guidelines for Selection of Structure. Various types of flow measuring structures and devices are presented in Annex A.

6.1.1 Weir - an overflow structure built perpendicular to an open channel axis to measure the rate of flow of water

6.1.2 Flume - in-line structure with a geometrically specified constriction built in an open channel such that the center line coincides with the center line of the channel in which the flow is to be measured

6.1.3 Orifice - measuring device with a well-defined, sharp-edged opening in a wall through which flow occurs such that the upstream water level is always well above the top of this opening

6.1.4 Current Meter - velocity measuring device used in a sample point through which partial discharge can be obtained

7 Flow Measuring Structure Installation

(b) Triangular-notch weir

(d) Submerged orifice

Figure 2. Installation of flow measuring structures

SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

7.2.1 The flow measuring structures shall be installed at the beginning and end of the channel section. The length of this section shall be recorded.

7.2.2 The outflow measuring structure shall be located at a point where backwater does not affect the flow to the extent that false intake rates are measured.

7.2.3 It is recommended that the type and size of the flow measuring structures be of the same type and size to minimize errors.

7.2.4 The beginning and end of the channel section where measurement will be taken shall be marked with stakes. The length of this section shall be recorded.

7.2.5 Current meters can be mounted on rods for stationary measurement (Figure 3) or suspended by cables (Figure 4) to allow free movement vertically and horizontally.

Figure 3. Current meter mounted on a rod SOURCE: Turnipseed and Sauer, Discharge Measurements at Gaging Stations: US Geological Techniques and Methods Book 3, Chapter A8. 2010

Figure 4. Current meter suspended by a cable SOURCE: Turnipseed and Sauer, Discharge Measurements at Gaging Stations: US Geological Techniques and Methods Book 3, Chapter A8. 2010

7.3.3 Current meters mounted on rods are more suitable in gauging small sections and ditches while suspended cable are for gauging large sections.

7.3.4 When mounting a current meter in a rod, a vaned tail piece shall be used to keep the meter facing into the current. The rod shall be marked to easy determination of depth.

8 Flow Measurement

8.1 The length and width of selected channel section shall be determined and recorded. All measurements and time of readings shall be recorded.

8.2 Flow measurement and discharge evaluation using weirs, flumes and orifices are detailed in Annex B.

8.3 Flow measurements and discharge evaluation using current meters are detailed in Annex C.

9 Computation

Seepage and percolation losses shall be determined using the formula:

$$(S \& P)_{losses} = \frac{(Q_i - Q_0)}{L}$$

where:

(S&P)losses	is the seepage and percolation loss rate, m ³ /s-m
Qi	is the inflow rate, m ³ /s
Qo	is the outflow rate, m ³ /s
L	is the length of channel reach, m

10 Bibliography

Food and Agriculture Organization. 1975. Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2

Food and Agriculture Organization. 1993. Irrigation Water Management Training Manual No. 8 Structures for Water Control and Distribution

International Institute for Land Reclamation and Improvement. 1989. Discharge Measurement Structures, 3rd Ed.

Sarki, A., et al. 2008. Comparison of Different Methods for Computing Seepage Losses in an Earthen Watercourse. Agricultura Tropica et Subtropica, Vol. 41 (4).

Sonnichsen, R.P. 1993. Seepage Rates from Irrigation Canals. Water Resources Program: Open-File Technical Report.

United States Department of Agriculture. 1993. National Engineering Handbook

United States Department of the Interior Bureau of Reclamation. 2001. Water Measurement Manual

Turnipseed, D.P. and V.B. Sauer. 2010. Discharge Measurements at Gaging Stations: US Geological Techniques and Methods Book 3, Chapter A8.

ANNEX A (informative)

Various Types of Commonly Used Flow Measurement Structures

Table 1. Types of Weir, Description and Discharge Evaluation

Classification	Description	Discharge Evaluation							
SHARP-CRESTED/ T	SHARP-CRESTED/ THIN-PLATE - weir constructed with a crest of vertical thin								
plate		1							
Contracted Rectangular		$Q = 1.84 (L - 0.2H)H^{3/2}$ Q = discharge, m ³ /s L = length of crest, m H = head (difference between the elevation of the weir crest and the elevation of the water surface in the weir pool), m							
Supressed Rectangular		$Q = \frac{2}{3}C_{d}LH\sqrt{2gH}$ $C_{d} = 0.615(1 + \frac{1}{H + 1.6})\left[1 + 0.5\left(\frac{H}{H + D}\right)^{2}\right]$ $Q = \text{discharge, m}^{3}/\text{s}$ $C_{d} = \text{discharge coefficient}$ $L = \text{length of crest, m}$ $g = \text{gravitational acceleration, m}^{2}/\text{s}$ $H = \text{head, m (mm for computing }\mu)$ $D = \text{distance from the crest to the bottom of the approach channel, mm}$							

Table 2. Types of Flumes, Description and Discharge Evaluation

Classification	Description	Discharge Evaluation
Circular Sharp-Edged	¢ 45 clean cut	$Q = C_d C_v A \sqrt{2g(h_1 - h_2)}$ $Q = C_d C_v A \sqrt{2g\Delta h}$ $Q = discharge, m^3/s$ $C_d = discharge coefficient$ $C_v = velocity coefficient$ $A = area of the orifice, m^2$ $h_1 h_2 = h_2 d differential across the orifice$
Rectangular Sharp-Edged		Δh = upstream head above the center of the orifice

Table 3. Types of Orifices, Description and Discharge Equation

Classification	Description	Discharge Evaluation
Anemometer and Propeller Type	- uses anemometer cup and propellers	
i ropener type	- rated by dragging through tanks of	
	still water at known speeds	
	- does not sense direction of velocity	
Electromagnetic	- produces voltage proportional to the	
	velocity	
	- provides direct analog reading of	
	velocity	
	- provides directional measurements	
Doppler Type	- measures velocity by the change of	
	source light or sound frequency from	Velocity-Area Method
	the frequency of reflections from	Midsection Method
	moving particles	Moving Boat Method
	- uses laser light (laser Doppler	
	Dopplor volocimator)	
Ontical Stroba	- mossures velocity using the strobe	
Velocity Meter	effect with mirrors mounted around a	
Velocity Meter	nolygon drum reflecting light coming	
	from the water surface. The rate of	
	rotation of the mirror drum is varied	
	until images become steady. With the	
	rate of rotation and the distance from	
	the mirrors to the water surface known,	
	surface velocity can be determined	

Table 4. Types of Current Meters, Description and Discharge Evaluation

ANNEX B (informative)

Discharge Measurement Using Weirs, Flumes and Orifices

B.1 Discharge Measurement Using Weirs

The following measurement procedure described in this annex can be used for the following standard types of sharp-crested weirs: rectangular, Cipolleti and V-notch.

Figure B.1. Dimensions for Discharge Measurement in Sharp-Crested Weirs SOURCE: FAO, Irrigation Water Management Training Manual No. 8 Structures for Water Control and Distribution, 1993

B.1.1 Establish the recommended dimensions shown in Figure B.1.

B.1.2 Estimate the maximum discharge to be measured which will determine the corresponding maximum head of water over the weir crest. Tables B.1 to B.3 show the corresponding head, H based on the discharge.

B.1.3 From the value of H, the level of the crest relative to the channel bed shall be at least twice higher than H.

B.1.4 The distance between the gauge and weir shall be at least four times than H.

B.1.5 The gauge's zero mark shall be at the same elevation with the weir crest.

B.1.6 Read the water level on the gauge and record as H.

B.1.7 Compute for the discharge Q based on the type of weir using the discharge evaluation equations shown in Annex A.

Head	Discharge (Q), L/s							
(II) m	Length of Crest (L), m							
(11), 11	0.25	0.50	0.75	1.00	1.25	1.50		
0.01	0	1	1	2	2	3		
0.015	1	2	3	3	4	5		
0.02	1	3	4	5	6	8		
0.03	2	5	7	10	12	14		
0.04	4	7	11	15	18	22		
0.05	5	10	15	20	26	31		
0.06	6	13	20	27	33	40		
0.08	10	20	31	41	51	62		
0.10	13	28	42	57	72	86		
0.12	17	36	56	75	94	113		
0.14		45	70	94	118	142		
0.16		55	85	114	143	173		
0.18		65	100	135	171	206		
0.20		76	117	158	199			
0.25		104	161	219				
0.30			209					

Table B.1. Discharge-Head Relationship for a Rectangular Weir

SOURCE: FAO, Irrigation Water Management Training Manual No. 8 Structures for Water Control and Distribution, 1993

Uaad	Discharge (Q), L/s							
H m	Length of Crest (L), m							
(п), ш	0.25	0.50	0.75	1.00	1.25	1.50		
0.01	0	1	1	2	2	3		
0.015	1	2	3	3	4	5		
0.02	1	3	4	5	7	8		
0.03	2	5	7	10	12	14		
0.04	4	7	11	15	19	22		
0.05	5	10	16	21	26	31		
0.06	7	14	21	27	34	41		
0.08	11	21	32	42	53	63		
0.10	15	29	44	59	74	88		
0.12	19	39	58	77	97	116		
0.14		49	73	97	122	146		
0.16		60	89	119	149	179		
0.18		71	107	142	178	213		
0.20		83	125	166	208			
0.25		116	174	233				
0.30			229					

SOURCE: FAO, Irrigation Water Management Training Manual No. 8 Structures for Water Control and Distribution, 1993

H, m	Q, L/s	H, m	Q, L/s	H, m	Q, L/s
0.01	0.0	0.08	2.5	0.15	12
0.02	0.1	0.09	3.3	0.16	14
0.03	0.2	0.10	4.3	0.17	16
0.04	0.4	0.11	5.5	0.18	19
0.05	0.8	0.12	6.8	0.19	22
0.06	1.2	0.13	8.3	0.20	24
0.07	1.8	0.14	10		

Table B.3	Discharge-Head	Relationshin	\mathbf{h} for a 900 V	V-notch Weir
Table D.J.	Discharge neau	i neiauonsinp	JULA JU	

SOURCE: FAO, Irrigation Water Management Training Manual No. 8 Structures for Water Control and Distribution, 1993

B.2 Discharge Measurement Using Flumes

B.2.1 Determine the degree of submergence, which is the ratio of the downstream head, H_b to the upstream head, H_a .

Degree of Submergence (%) =
$$\frac{H_b}{H_a} \times 100$$

B.2.2 If the computed degree of submergence is equal to or below the free flow limit indicated in Table B.4, free flow condition exists. Read the free flow discharge ($Q_{\text{free flow}}$) from Table B.5 based on H_a and throat width, W.

Table B.4. Free flow limits for various sizes of Parshall Flumes

Width of throat (W)	Free flow limit of H _b /H _a
15.2 cm to 23 cm (6 in to 9 in)	60%
30.5 cm to 244 cm (1 ft to 8 ft)	70%

SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

B.2.3 If the computed degree of submergence is greater than the free flow limit indicated in Table B.4,

B.2.3.1	If W = 15.2 cm (6 in), use Figure B.2 directly
---------	--

B.2.3.2 If W = 23 cm (9 in), use Figure B.3 directly

B.2.3.3 If W = 30.5 cm (1 ft), use the correction diagram shown in Figure B.4 for Q_{correction}

B.2.3.4 If W > 30.5 cm (1ft), use Figure B.4 and the multiplying factor shown in Table B.6 based on the size of flume for $Q_{correction}$

B.2.4 Apply the negative correction to the free flow discharge to determine the discharge from the submerged flow ($Q_{submerged flow}$).

 $Q_{submerged flow} = Q_{free flow} - Q_{correction}$

Head	Discharge (Q), m ³ /s for Throat Widths (W) of-								
неац (Н.)	15.24	22.86	30.48	45.72	60.96	91.44	121.92	152.40	182.88
cm	cm	cm	cm	cm	cm	cm	cm	cm	cm
	0.50 ft	0.75 ft	1.00 ft	1.50 ft	2.00 ft	3.00 ft	4.00 ft	5.00 ft	6.00 ft
3.00	0.0015	0.0025	0.0033	0.0048					
3.50	0.0019	0.0032	0.0042	0.0060					
4.00	0.0024	0.0039	0.0052	0.0074					
4.50	0.0028	0.0047	0.0062	0.0089	0.0116	0.0169			
5.00	0.0034	0.0055	0.0072	0.0105	0.0137	0.0200			
5.50	0.0039	0.0063	0.0084	0.0122	0.0159	0.0232			
6.00	0.0045	0.0072	0.0096	0.0139	0.0182	0.0266	0.0348	0.0429	
6.50	0.0051	0.0082	0.0108	0.0157	0.0206	0.0302	0.0395	0.0487	
7.00	0.0057	0.0092	0.0121	0.0176	0.0231	0.0339	0.0444	0.0548	
7.50	0.0064	0.0102	0.0134	0.0196	0.0257	0.0378	0.0495	0.0611	0.0726
8.00	0.0071	0.0112	0.0148	0.0217	0.0285	0.0418	0.0549	0.0677	0.0805
8.50	0.0078	0.0123	0.0162	0.0238	0.0313	0.0459	0.0604	0.0746	0.0887
9.00	0.0085	0.0135	0.0177	0.0260	0.0342	0.0503	0.0661	0.0817	0.0971
9.50	0.0093	0.0146	0.0192	0.0282	0.0372	0.0547	0.0720	0.0890	0.1059
10.00	0.0100	0.0158	0.0208	0.0306	0.0402	0.0593	0.0780	0.0965	0.1149
10.50	0.0108	0.0170	0.0224	0.0329	0.0434	0.0640	0.0843	0.1043	0.1242
11.00	0.0117	0.0183	0.0240	0.0354	0.0466	0.0688	0.0907	0.1123	0.1338
11.50	0.0125	0.0196	0.0254	0.0379	0.0500	0.0738	0.0973	0.1205	0.1436
12.00	0.0134	0.0209	0.0274	0.0405	0.0534	0.0789	0.1040	0.1290	0.1537
12.50	0.0143	0.0222	0.0292	0.0431	0.0569	0.0841	0.1110	0.1376	0.1640
13.00	0.0152	0.0236	0.031	0.0458	0.0604	0.0894	0.1181	0.1464	0.1746
13.50	0.0161	0.0250	0.0328	0.0485	0.0641	0.0949	0.1253	0.1555	0.1854
14.00	0.0171	0.0264	0.0347	0.0513	0.0678	0.1004	0.1327	0.1647	0.1965
14.50	0.0180	0.0279	0.0360	0.0541	0.0716	0.1061	0.1403	0.1741	0.2078
15.00	0.0190	0.0294	0.0385	0.0570	0.0755	0.1119	0.1480	0.1838	0.2194
15.50	0.0200	0.0309	0.4050	0.0600	0.0794	0.1178	0.1558	0.1936	0.2351
16.00	0.0211	0.0324	0.4250	0.0630	0.0834	0.1238	0.1638	0.2036	0.2431
16.50	0.0221	0.0340	0.0445	0.0661	0.0875	0.1299	0.1720	0.2138	0.2554
17.00	0.0232	0.0356	0.0466	0.0692	0.0916	0.1361	0.1803	0.2242	0.2678
17.50	0.0243	0.0372	0.0487	0.0723	0.0958	0.1425	0.1887	0.2347	0.2805
18.00	0.0254	0.0388	0.0508	0.0755	0.1001	0.1489	0.1973	0.2455	0.2934
18.50	0.0265	0.0405	0.0530	0.0788	0.1045	0.1554	0.2060	0.2564	0.3065
19.00	0.0276	0.0422	0.0552	0.0821	0.1089	0.1620	0.2149	0.2675	0.3198
19.50	0.0288	0.0439	0.0574	0.0854	0.1133	0.1688	0.2239	0.2787	0.3333
20.00	0.0300	0.0456	0.0597	0.0888	0.1179	0.1756	0.2330	0.2901	0.3471
20.50	0.0312	0.0474	0.0619	0.0923	0.1225	0.1825	0.2423	0.3017	0.3610
21.00	0.0324	0.0492	0.0643	0.0957	0.1271	0.1896	0.2516	0.3135	0.3752
21.50	0.0336	0.0509	0.0666	0.0993	0.1319	0.1967	0.2612	0.3254	0.3895

 Table B.5. Free Flow Discharge Values for Parshall Flumes

Table B.5 (continued)

22.00	0.0349	0.0528	0.0690	0.1029	0.1366	0.2039	0.2708	0.3375	0.4040
22.50	0.0361	0.0546	0.0714	0.1065	0.1415	0.2112	0.2806	0.3498	0.4188
23.00	0.0374	0.0565	0.0738	0.1101	0.1464	0.2186	0.2905	0.3622	0.4337
23.50	0.0387	0.0584	0.0762	0.1138	0.1513	0.2261	0.3005	0.3748	0.4489
24.00	0.0400	0.0603	0.0787	0.1176	0.1564	0.2337	0.3107	0.3875	0.4642
24.50	0.0413	0.0622	0.0812	0.1214	0.1614	0.2413	0.3210	0.4004	0.4797
25.00	0.0427	0.0642	0.0838	0.1252	0.1666	0.2491	0.3314	0.4134	0.4954
25.50	0.0440	0.0661	0.0863	0.1291	0.1718	0.2569	0.3419	0.4267	0.5113
26.00	0.0454	0.0681	0.0889	0.1330	0.1770	0.2649	0.3525	0.4400	0.5274
26.50	0.0468	0.0701	0.0915	0.1370	0.1823	0.2729	0.3633	0.4535	0.5436
27.00	0.0460	0.0722	0.0942	0.1410	0.1877	0.2810	0.3741	0.4672	0.5601
27.50	0.0482	0.0742	0.0968	0.1450	0.1931	0.2892	0.3831	0.4810	0.5767
28.00	0.0496	0.0763	0.0995	0.1491	0.1986	0.2975	0.3962	0.4949	0.5935
28.50	0.0510	0.0784	0.1023	0.1532	0.2041	0.3058	0.4075	0.5090	0.6105
29.00	0.0525	0.0805	0.1050	0.1573	0.2097	0.3143	0.4188	0.5233	0.6277
29.50	0.0539	0.0826	0.1078	0.1615	0.2153	0.3228	0.4303	0.5377	0.6451
30.00	0.0554	0.0848	0.1106	0.1658	0.2210	0.3314	0.4418	0.5522	0.6626
30.50	0.0569	0.087	0.1134	0.1700	0.2267	0.3401	0.4535	0.5669	0.6803
31.00	0.0583	0.0892	0.1162	0.1743	0.2325	0.3489	0.4653	0.5817	0.6980
31.50	0.0599	0.0914	0.1191	0.1782	0.2383	0.3577	0.4772	0.5767	0.7162
32.00	0.0614	0.0936	0.1219	0.1831	0.2442	0.3667	0.4892	0.6118	0.7344
32.50	0.0629	0.0959	0.1248	0.1876	0.2502	0.3757	0.5013	0.6270	0.7528
33.00	0.0645	0.0981	0.1278	0.1919	0.2562	0.3848	0.5135	0.6424	0.7713
33.50	0.0661	0.1004	0.1307	0.1964	0.2622	0.3939	0.5259	0.6579	0.7901
34.00	0.0677	0.1027	0.1337	0.2010	0.2683	0.4052	0.5385	0.6736	0.8089
34.50	0.0693	0.105	0.1367	0.2055	0.2744	0.4125	0.5508	0.6893	0.8280
35.00	0.0709	0.1074	0.1398	0.2101	0.2806	0.4219	0.5635	0.7053	0.8472
35.50	0.0725	0.1097	0.1428	0.2145	0.2869	0.4314	0.5762	0.7213	0.8666
36.00	0.0742	0.1121	0.1459	0.2194	0.2932	0.4410	0.5891	0.7325	0.8861
36.50	0.0758	0.1145	0.149	0.2241	0.2995	0.4506	0.6021	0.7538	0.9051
37.00	0.0775	0.1169	0.1521	0.2289	0.3059	0.4603	0.6151	0.7703	0.9257
37.50	0.0792	0.1193	0.1552	0.2337	0.3123	0.4703	0.6283	0.7869	0.9457
38.00	0.0809	0.1218	0.1584	0.2385	0.3188	0.4799	0.6416	0.8036	0.9659
38.50	0.0826	0.1242	0.1616	0.2433	0.3253	0.4898	0.6549	0.8204	0.9863
39.00	0.0843	0.1267	0.1648	0.2482	0.3319	0.4998	0.6684	0.8374	1.007
39.50	0.0861	0.1292	0.168	0.2531	0.3385	0.5099	0.6820	0.8545	1.027
40.00	0.0878	0.1317	0.1713	0.2580	0.3452	0.5201	0.6957	0.8718	1.048
40.50	0.0896	0.1342	0.1745	0.2630	0.3519	0.5303	0.7094	0.8891	1.069
41.00	0.0914	0.1368	0.1778	0.2680	0.3586	0.5406	0.7233	0.9066	1.090
41.50	0.0932	0.1394	0.1811	0.2731	0.3654	0.5509	0.7373	0.9242	1.112
42.00	0.0950	0.1419	0.1845	0.2782	0.3783	0.5614	0.7513	0.9419	1.133
42.50	0.0968	0.1445	0.1878	0.2833	0.3792	0.5719	0.7655	0.9598	1.155

Table B.5 (continued)

12.00	0.0006	0 1 4 7 1	0 1012	0.2001	0 2061	0 5024	0 7700	0 0 7 7 9	1 1 7 6
43.00	0.0980	0.1471	0.1912	0.2004	0.3001	0.5624	0.7796	0.9778	1.170
44 00	0.1004	0.1470	0.198	0.2988	0.3751	0.6038	0.8086	1 014	1.170
44 50	0.1023	0.1521	0.2014	0.2900	0.4072	0.6140	0.8231	1.011	1.220
45.00	0.1012	0.1577	0 2049	0.3093	0.1072	0.6254	0.8377	1.055	1.215
45 50	0.1079	0.1604	0.2019	0.3146	0.4214	0.6363	0.8525	1.001	1.200
46.00	0.1075	0.1631	0.2119	0.3199	0.4286	0.6473	0.8673	1.078	1 310
46.50		0.1659	0.2154	0.3253	0.4359	0.6384	0.8822	1.107	1.333
47.00		0.1686	0.2189	0.3307	0.4432	0.6695	0.8972	1.126	1.356
47.50		0.1713	0.2225	0.3361	0.4505	0.6807	0.9124	1.145	1.379
48.00		0.1741	0.2260	0.3416	0.4579	0.6919	0.9276	1.164	1.402
48.50		0.1769	0.2296	0.3471	0.4653	0.7033	0.9428	1.184	1.423
49.00		0.1797	0.2333	0.3526	0.4727	0.7147	0.9582	1.203	1.449
49.50		0.1825	0.2369	0.3581	0.4802	0.7261	0.9737	1.223	1.473
50.00		0.1853	0.2405	0.3637	0.4878	0.7376	0.9893	1.242	1.496
50.50		0.1882	0.2442	0.3693	0.4953	0.7492	1.005	1.262	1.520
51.00		0.1910	0.2479	0.3750	0.5030	0.7609	1.021	1.282	1.544
51.50		0.1939	0.2516	0.3806	0.5106	0.7726	1.037	1.302	1.569
52.00		0.1968	0.2553	0.3863	0.5183	0.7844	1.052	1.322	1.593
52.50		0.1997	0.25911	0.3921	0.5261	0.7962	1.068	1.342	1.617
53.00		0.2026	0.2629	0.3978	0.5339	0.8081	1.085	1.363	1.642
53.50		0.2056	0.2666	0.4036	0.5417	0.8201	1.101	1.383	1.667
54.00		0.2085	0.2704	0.4094	0.5495	0.8321	1.117	1.404	1.692
54.50		0.2115	0.2743	0.4153	0.5575	0.8442	1.133	1.424	1.717
55.00		0.2144	0.2781	0.4212	0.5654	0.8564	1.150	1.445	1.742
55.50		0.2174	0.2820	0.4271	0.5734	0.8686	1.166	1.466	1.767
56.00		0.2204	0.2858	0.4330	0.5814	0.8809	1.183	1.487	1.793
56.50		0.2235	0.2897	0.4390	0.5895	0.8932	1.200	1.508	1.818
57.00		0.2265	0.2936	0.4449	0.5976	0.9057	1.217	1.529	1.844
57.50		0.2295	0.2976	0.4510	0.6057	0.9181	1.233	1.551	1.870
58.00		0.2326	0.3015	0.4570	0.6139	0.9307	1.250	1.572	1.896
58.50		0.2357	0.3055	0.4631	0.6221	0.9433	1.267	1.594	1.922
59.00		0.2388	0.3095	0.4692	0.6304	0.9559	1.285	1.615	1.948
59.50		0.2419	0.3135	0.4753	0.6387	0.9686	1.302	1.637	1.975
60.00		0.245	0.3175	0.4815	0.6470	0.9814	1.319	1.659	2.001
60.50		0.2481	0.3215	0.4877	0.6554	0.9943	1.336	1.681	2.028
61.00		0.2513	0.3256	0.4939	0.6638	1.007	1.354	1.703	2.055
61.50			0.3296	0.5001	0.6723	1.020	1.371	1.725	2.082
62.00			0.3337	0.5064	0.6808	1.033	1.389	1.748	2.109
62.50			0.3378	0.5127	0.6893	1.046	1.407	1.770	2.136
63.00			0.3420	0.5190	0.6978	1.059	1.425	1.793	2.163
63.50			0.3461	0.5254	0.7064	1.073	1.443	1.815	2.191

Table B.5 (continued)

64.00	0.3503	0.5317	0.7151	1.086	1.460	1.838	2.218
64.50	0.3544	0.5381	0.7238	1.099	1.479	1.861	2.246
65.00	0.3586	0.5446	0.7325	1.113	1.497	1.884	2.274
65.50	0.3628	0.5510	0.7412	1.126	1.515	1.907	2.302
66.00	0.3671	0.5575	0.7500	1.139	1.533	1.930	2.330
66.50	0.3713	0.5640	0.7588	1.153	1.552	1.953	2.538
67.00	0.3755	0.5706	0.7677	1.167	1.570	1.977	2.386
67.50	0.3798	0.5771	0.7766	1.180	1.588	2.000	2.415
68.00	0.3841	0.5837	0.7855	1.194	1.607	2.024	2.443
68.50	0.3884	0.5903	0.7945	1.208	1.626	2.047	2.472
69.00	0.3927	0.5970	0.8035	1.222	1.645	2.071	2.501
69.50	0.971	0.6036	0.8125	1.236	1.663	2.095	2.530
70.00	0.4014	0.6103	0.8216	1.249	1.682	2.119	2.559
70.50	0.4058	0.6170	0.8307	1.263	1.701	2.143	2.588
71.00	0.4102	0.6238	0.8399	1.278	1.720	2.167	2.617
71.50	0.4146	0.6306	0.8491	1.292	1.739	2.192	2.647
72.00	0.4190	0.6373	0.8583	1.306	1.759	2.216	2.676
72.50	0.4235	0.6442	0.8675	1.320	1.778	2.240	2.706
73.00	0.4279	0.6510	0.8768	1.334	1.797	2.265	2.736
73.50	0.4324	0.6579	0.8862	1.349	1.817	2.290	2.766
74.00	0.4369	0.6648	0.8955	1.363	1.836	2.314	2.796
74.50	0.4414	0.6717	0.9049	1.378	1.856	2.339	2.826
75.00	0.4459	0.6787	0.9143	1.392	1.876	2.364	2.856

SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

Figure B.2. Rate of Submerged Flow through a 15.2 cm (6 in) Parshall Flume SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

Figure B.3 – Rate of Submerged Flow through a 23 cm (9 in) Parshall Flume SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

Figure B.4. Correction Diagram for a 30.5 cm (1 ft) Parshall Flume SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

Table B.6.	Multiplying	Factor for	Various	Throat	Widths
Tubic Divi	munipiying	I uctor for	vuiious	Imout	Width5

Throat	t Width, W	Multinlying Factor M	
ft	cm	Multiplying ractor, M	
1	30.5	1.0	
1.5	45.7	1.4	
2	61.0	1.8	
3	91.5	2.4	
4	122.0	3.1	
5	152.5	3.7	
6	183.0	4.3	

SOURCE: FAO, Irrigation and Drainage Paper 26/2: Small Hydraulic Structures, Vol. 2, 1975

B.3 Discharge Measurement Using Orifice

$$Q = C_d C_v A \sqrt{2g(h_1 - h_2)}$$
$$Q = C_d C_v A \sqrt{2g\Delta h}$$

where:

Q	is the discharge (m ³ /s)
Cd	is the discharge coefficient
Cv	is the velocity coefficient
A	is the area of the orifice (m ²)
h_1-h_2	is the head differential across the orifice
Δh	is the upstream head above the center of the orifice

Table B.7. Average Discharge Coefficients for Circular Orifices(negligible approach velocity)

Orifice Diameter (D), m	Cd (free flow)	Cd (submerged flow)
0.020	0.61	0.57
0.025	0.62	0.58
0.035	0.64	0.61
0.045	0.63	0.61
0.050	0.62	0.61
0.065	0.61	0.60
≥ 0.075	0.60	0.60

SOURCE: ILRI, Discharge Measurement Structures, 3rd Ed. 1989

ANNEX C (informative)

Discharge Measurement Using Current Meters

C.1 Velocity-Area Method

C.1.1 Select a measuring section and determine the overall width and depth.

C.1.2 Layout the subsection verticals such that no subsection has more than 10% of the discharge in it.

C.1.3 It is preferred that the width of the subsection lessens as depths and velocities increase.

C.1.4 The initial point can be either bank and the edge of water is the first subsection.

C.1.5 Measure and record the following for each subsection:

- distance from the initial point
- depth
- meter position
- number of revolutions
- time interval
- horizontal angle of flow

C.1.6 Measure in succession until completed to the opposite bank.

C.1.7 Compute for the discharge using the formula below.

$$Q = \sum_{i=1}^{n} a_i v_i$$

where:

- Q is the total discharge (m³/s)
- a_i is the cross-section area for the ith segment of the n segments into which the cross section is divided (m²)
- v_i is the corresponding mean velocity of the flow normal to the ith segment or vertical (m/s)

C.2 Midsection Method

C.2.1 This method assumes that the mean velocity in each vertical represents the mean velocity in a partial rectangular area.

C.2.2 The cross-section area for a segment extends laterally from half the distance from the preceding vertical to half the distance to the next vertical, and vertically from the water surface to the channel bed.

- **C.2.3** Measure the velocity at one or more selected points in the vertical.
- **C.2.4** Compute for the partial discharge using the formula below:

$$q_{i} = v_{i} \left[\frac{\left(b_{i} - b_{(i-1)}\right)}{2} + \frac{\left(b_{(i+1)} - b_{i}\right)}{2} \right] d_{i} = v_{i} \left[\frac{b_{(i+1)} - b_{(i-1)}}{2} \right] d_{i}$$

where:

- q_i is the discharge through partial section i (m³/s)
- v_i is the mean velocity at location i (m/s)
- b_i is the distance from initial point to location i (m)
- $b_{(i-1)}$ is the distance from initial point to preceding location (m)
- $b_{(i+1)}$ is the distance from initial point to next location (m)
- d_i is the depth of water at location i (m)

Figure C.1. Cross-section measurements for the midsection method SOURCE: Turnipseed and Sauer, Discharge Measurements at Gaging Stations: US Geological Techniques and Methods Book 3, Chapter A8, 2010

Technical Working Group (TWG) for the Development of Philippine National Standard for Conveyance Systems – Performance Evaluation of Open Channels – Determination of Conveyance Loss by Inflow-Outflow Method

Chair

Engr. Bonifacio S. Labiano National Irrigation Administration

Members

Engr. Felimar M. Torizo Board of Agricultural Engineering Professional Regulation Commission Dr. Teresita S. Sandoval

Bureau of Soils and Water Management Department of Agriculture

Dr. Elmer D. Castillo

Philippine Society of Agricultural Engineers

Dr. Armando N. Espino Jr.

Central Luzon State University

Dr. Roger A. Luyun Jr.

Engr. Francia M. Macalintal Philippine Council for Agriculture and Fisheries

University of the Philippines Los Baños Philippine Council for Agriculture and Department of Agriculture

Project Managers

Engr. Darwin C. Aranguren

Engr. Romulo E. Eusebio

Engr. Mary Louise P. Pascual

Engr. Fidelina T. Flores

Engr. Marie Jehosa B. Reyes

Ms. Micah L. Araño

Ms. Caroline D. Lat

Mr. Gerald S. Trinidad

University of the Philippines Los Baños – Agricultural Machinery Testing and Evaluation Center